DOI QR코드

DOI QR Code

The Effect of an Aluminum Mold on Densification of Copper Powder Under Warm Pressing

온간금형 압축시 구리 분말의 치밀화에 대한 알루미늄 몰드의 영향

  • 이성철 (포항공과대학교 대학원 기계공학과) ;
  • 박태욱 (포항공과대학교 대학원 기계공학과) ;
  • 김기태 (포항공과대학교 기계공학과)
  • Published : 2008.04.01

Abstract

Densification behavior of copper powder was investigated to study the effect of an aluminum mold under warm pressing. The low flow stress of an aluminum mold is appropriate to apply hydrostatic stress to powder compacts during compaction under high temperature. The suggested powder metallurgy process is very useful under high temperature since copper powder compacts have higher relative density over axial stress of 100 MPa and show more homogeneity as compared with conventional warm pressing. Elastoplastic constitutive equation proposed by Shima and Oyane was implemented into a finite element program (ABAQUS) for densification behavior under warn pressing by using a metal mold. Finite element results agreed well with experimental data for densification and deformation of copper powder compacts in the mold.

Keywords

Aluminum Mold;Densification;Finite Element Analysis;Warm Pressing

References

  1. Arbstedt, P., 1986, 'Developments in Iron ans Steel Powder Production,' Metal Powder Reports, Vol. 41, No. 1, pp. 64-67
  2. St Laurent, S. and Chagnon, F., 1999, 'Behaviour of Steel Powder Mixtures Processed by Warm Compaction,' Metal Powder Report, Vol. 54, No. 3, pp. 42 https://doi.org/10.1016/S0026-0657(99)80408-1
  3. Yang, H. C., Lee, J. W. and Kim, K. T., 2004, 'Rubber Isostatic Pressing of Metal Powder under Warm Temperatures,' Powder Technol, Vol. 139, pp. 240-251 https://doi.org/10.1016/j.powtec.2003.01.001
  4. Park, J. G. and Kim, K. T., 2004, 'Densification Behavior of Metal Powder under Warm Isostatic Pressing by Using a Metal Mold,' Trans. Of KSME (A), Vol. 28, No. 6, pp. 838-847 https://doi.org/10.3795/KSME-A.2004.28.6.838
  5. Shima, S. and Oyane, M., 1976, 'Plasticity Theory for Porous Metals,' Int. J. Mech. Sci., Vol. 18, pp. 285-291 https://doi.org/10.1016/0020-7403(76)90030-8
  6. Kim, K. T., Choi, S. W. and Park, H., 2000, "Densification Behavior of Ceramic Powder Under Cold Compaction," ASME J. Eng. Mat. Tech., Vol. 122, No. 4, pp. 238-244 https://doi.org/10.1115/1.482793
  7. ABAQUS User's I, II and III Manual, 2001, Ver. 6.2, H.D. Hibbitt, I. Karlsson and E.P. Sorenson, USA
  8. Augereau, F., Laux, D., Allais, L., Mottot M. and Caes, C., 2007, 'Ultrasonic Measurement of Anisotropy and Temperature Dependence of Elastic Parameters by a Dry Coupling Method Applied to a 6061-T6 alloy,' Ultrasonics, Vol. 46, pp. 34-41 https://doi.org/10.1016/j.ultras.2006.10.002
  9. Ledbetter, H. M., 1982, 'Temperature Behaviour of Young's Moduli of Forty Engineering Alloys,' Cryogenics, pp. 653-656
  10. Andrade, U. R., Meyers, M. A. and Chokshi, A. H., 1994, 'Constitutive Description of Worand Shork- Hardened Copper,' Scripta Meter., Vol. 30, No. 7, pp. 933-938 https://doi.org/10.1016/0956-716X(94)90418-9
  11. Ludwik, P., 1909, 'Elemente der Technologischen Mechanik,' Springer, Berlin
  12. Kim, K. T., Yang, H. C. and Hong, S. T., 2001, "Densification Behavior of Titanium Alloy Powder Compacts at High Temperature," Powder Metall., Vol. 44, No. 1, pp. 34-40 https://doi.org/10.1179/003258901666149
  13. Song, M. C., Kim, H. G. and Kim, K. T., 1996, 'Creep Densification of Copper Power Compact,' Int. J. Mech. Sci., Vol. 38, No. 11, pp. 1197-1208 https://doi.org/10.1016/0020-7403(96)00011-2