DOI QR코드

DOI QR Code

Likelihood Based Inference for the Shape Parameter of the Inverse Gaussian Distribution

Lee, Woo-Dong;Kang, Sang-Gil;Kim, Dong-Seok

  • Published : 2008.09.30

Abstract

Small sample likelihood based inference for the shape parameter of the inverse Gaussian distribution is the purpose of this paper. When shape parameter is of interest, the signed log-likelihood ratio statistic and the modified signed log-likelihood ratio statistic are derived. Hsieh (1990) gave a statistical inference for the shape parameter based on an exact method. Throughout simulation, we will compare the statistical properties of the proposed statistics to the statistic given by Hsieh (1990) in term of confidence interval and power of test. We also discuss a real data example.

Keywords

Inverse Gaussian distribution;shape parameter;signed log-likelihood statistics;modified signed log-likelihood ratio statistics

References

  1. Cox, D. R. and Reid, N. (1987). Orthogonal parameters and approximate conditional inference (with discussion), Journal of the Royal Statistical Society, Series B, 49, 1-39
  2. Folks, J. L. and Chhikara, R. S. (1978). The inverse Gaussian distribution and its statistical application-A review, Journal of the Royal Statistical Society, Series B, 40, 263-289
  3. Barndorff-Nielsen, O. E. (1986). Inference on full or partial parameters based on the standardized signed log likelihood ratio, Biometrika, 73, 307-322
  4. Barndorff-Nielsen, O. E. (1991). Modified signed log likelihood ratio, Biometrika, 78, 557-563 https://doi.org/10.1093/biomet/78.3.557
  5. Barndorff-Nielsen, O. E. and Cox, D. R. (1994). Inference and Asymptotics, Chapman & Hall/CRC, London
  6. Chhikara, R. S. and Folks, J. L. (1977). The inverse Gaussian distribution as a lifetime model, Technometrics, 19, 461-468 https://doi.org/10.2307/1267886
  7. Hsieh, H. K. (1990). Inferences on the coefficient of variation of an inverse Gaussian distribution, Communications in Statistics-Theory and Methods, 19, 1589-1605 https://doi.org/10.1080/03610929008830279
  8. Kang, S. G., Kim, D. H. and Lee, W. D. (2004). Noninformative priors for the ratio of parameters in inverse Gaussian distribution, The Korean Journal of Applied Statistics, 17, 49-60
  9. Mudholkar, G. S. and Natarajan, R. (2002). The inverse Gaussian models: Analogues of symmetry, skewness and kurtosis, Annals of the Institute of Statistical Mathematics, 54, 138-154 https://doi.org/10.1023/A:1016173923461
  10. Seshadri, V. (1999). The Inverse Gaussian Distribution: Statistical Theory and Applications, Springer, New York
  11. Tweedie, M. C. K. (1957a). Statistical properties of inverse Gaussian distributions I, The Annals of Mathematical Statistics, 28, 362-377 https://doi.org/10.1214/aoms/1177706964
  12. Chhikara, R. S. and Folks, J. L. (1989). The Inverse Gaussian Distribution: Theory, Methodology and Applications, Marcel Dekker, New York
  13. Tweedie, M. C. K. (1957b). Statistical properties of inverse Gaussian distributions II, The Annals of Mathematical Statistics, 28, 696-705 https://doi.org/10.1214/aoms/1177706881
  14. Whitmore, G. A. (1979). An inverse Gaussian model for labour turnover, Journal of the Royal Statistical Society, Serise A, 142, 468-478 https://doi.org/10.2307/2982553

Cited by

  1. Small sample likelihood based inference for the normal variance ratio vol.24, pp.4, 2013, https://doi.org/10.7465/jkdi.2013.24.4.911