DOI QR코드

DOI QR Code

The Effects of Anodizing Process Parameters and Oxidation Temperature under Atmospheric Environment on Morphology of the Pure Titanium by Alternating Current Arc-anodizing

순티타늄의 교류 불꽃 양극산화층 미세조직에 미치는 양극산화공정변수 및 대기산화온도의 영향

  • Yang, Hack-Hui (Department of Metallurgical & Materials Engineering, Inha Technical College) ;
  • Park, Chong-Sung (Department of Metallurgical & Materials Engineering, Inha Technical College)
  • 양학희 (인하공업전문대학 금속재료과) ;
  • 박종성 (인하공업전문대학 금속재료과)
  • Published : 2008.02.29

Abstract

Anodizing to form oxide layers on the pure titanium was performed in the electrolyte containing 1.5M $H_2SO_4$, 0.2M $H_3PO_4$, and 2.5wt.% $CuSO_4$ using the ac-biased arc anodizing technique. Titanium oxide layers anodized with different applied voltages, voltage-elevating rates, and anodizing times were investigated. In addition, thermal oxidation test under an atmospheric environment for the arc-anodized specimens was carried out. The thickness of oxide layers were not affected by the voltage-elevating rates, but increased slightly with the increase of anodizing times. The thickness of oxide layers were increased with the increase of voltages, and increased remarkably in the condition of 200V. The size and number of the pore observed in the center of the porous cell were decreased with increase of applied voltage. From the result of thermal oxidation test, it revealed that oxide layer formed by arc anodizing more effective to prevent oxidation of pure titanium.

Keywords

References

  1. H. Habazaki et al., Surf. Coat. Technol., 201 (2007) 8730 https://doi.org/10.1016/j.surfcoat.2006.05.041
  2. H. S. Kim et al., Kor. J. Mater. Res., 17, 1 (2007) 6 https://doi.org/10.3740/MRSK.2007.17.1.006
  3. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S. J. Dowey, Surf. Coat. Technol., 122 (1999) 73 https://doi.org/10.1016/S0257-8972(99)00441-7
  4. P. Kurze, W. Krysmann, H. G. Schneider, Cryst. Res. Technol., 21, 1603 (1986)
  5. W. Krysmann, P. Kurze, K. H. Dittrich, H. G. Schneider, Cryst. Res. Technol., 19 (1984) 973 https://doi.org/10.1002/crat.2170190721
  6. K. H. Dittrich, W. Krysmann, P. Kurze, H. G. Schneider, Cryst. Res. Technol., 19 (1984) 93 https://doi.org/10.1002/crat.2170190117
  7. G. P. Wirtz, S. D. Brown, W. M. Krive, Mater. Manuf. Process, 6 (1991) 87 https://doi.org/10.1080/10426919108934737
  8. S. K. Poznyak et al., J. Electroanal. Chem., 579 (2005) 299 https://doi.org/10.1016/j.jelechem.2005.03.002
  9. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S. J. Dowey, Surf. Coat. Tech., 122 (1999) 73
  10. V. Kadary, N. Klein, J. Electrochem. Soc., 127 (1980) 139 https://doi.org/10.1149/1.2129604
  11. H.-J. Song et al., Surf. Coat. Technol., 201 (2007) 8738 https://doi.org/10.1016/j.surfcoat.2006.11.022
  12. C. K. Dyer, J. S. Leach, J. Electrochem. Soc., 125 (1978) 1032
  13. C. W. Yoo, H. J. Oh, J. H. Lee, J. J. Chang, C. S. Chi, J. Kor. Inst. Surf. Eng., 35, 6(2002) 383
  14. N. K. Kuromoto et al., Mater. Char., 58 (2007) 114 https://doi.org/10.1016/j.matchar.2006.03.020
  15. Y.-J. Park et al., Appl. Surf. Sci., 253 (2007) 6013 https://doi.org/10.1016/j.apsusc.2006.12.112
  16. H. Habazaki et al., Electrochem. Com. 9 (2007) 1222 https://doi.org/10.1016/j.elecom.2006.12.023