• Kim, Tae-Sung ;
  • Ko, Mi-Hwa ;
  • Choi, Yong-Kab
  • Published : 2008.03.31


Let ${Y_i;-\infty<i<\infty}$ be a doubly infinite sequence of identically distributed and $\phi$-mixing random variables with zero means and finite variances and ${a_i;-\infty<i<\infty}$ an absolutely summable sequence of real numbers. In this paper, we prove the complete moment convergence of ${{\sum}_{k=1}^{n}\;{\sum}_{i=-\infty}^{\infty}\;a_{i+k}Y_i/n^{1/p};n\geq1}$ under some suitable conditions.


moving average process;complete moment convergence$\phi$-mixing


  1. J. I. Baek, T. S. Kim, and H. Y. Liang, On the convergence of moving average processes under dependent conditions, Aust. N. Z. J. Stat. 45 (2003), no. 3, 331-342
  2. R. M. Burton and H. Dehling, Large deviations for some weakly dependent random processes, Statist. Probab. Lett. 9 (1990), no. 5, 397-401
  3. Y. S. Chow, On the rate of moment convergence of sample sums and extremes, Bull. Inst. Math. Acad. Sinica 16 (1988), no. 3, 177-201
  4. D. L. Li, M. B. Rao, and X. C. Wang, Complete convergence of moving average processes, Statist. Probab. Lett. 14 (1992), no. 2, 111-114
  5. Y. X. Li and L. X. Zhang, Complete moment convergence of moving-average processes under dependence assumptions, Statist. Probab. Lett. 70 (2004), no. 3, 191-197
  6. H. Y. Liang, Complete convergence for weighted sums of negatively associated random variables, Statist. Probab. Lett. 48 (2000), no. 4, 317-325
  7. Q. M. Shao, Almost sure invariance principles for mixing sequences of random variables, Stochastic Process. Appl. 48 (1993), no. 2, 319-334
  8. L. X. Zhang, Complete convergence of moving average processes under dependence assumptions, Statist. Probab. Lett. 30 (1996), no. 2, 165-170
  9. I. A. Ibragimov, Some limit theorems for stationary processes, Teor. Verojatnost. i Primenen. 7 (1962), 361-392

Cited by

  1. Toeplitz lemma, complete convergence, and complete moment convergence vol.46, pp.4, 2017,
  2. On Complete Convergence of Moving Average Process for AANA Sequence vol.2012, 2012,
  3. Complete moment convergence of widely orthant dependent random variables vol.46, pp.14, 2017,
  4. Convergence of Moving Average Processes for Dependent Random Variables vol.40, pp.13, 2011,
  5. Complete moment convergence of moving average processes under ρ-mixing assumption vol.61, pp.6, 2011,
  6. Complete moment convergence for moving average process generated by ρ − $\rho^{-}$ -mixing random variables vol.2015, pp.1, 2015,
  7. Complete Convergence for Moving Average Process of Martingale Differences vol.2012, 2012,