DOI QR코드

DOI QR Code

BIHARMONIC LEGENDRE CURVES IN SASAKIAN SPACE FORMS

  • Fetcu, Dorel (DEPARTMENT OF MATHEMATICS "GH. ASACHI" TECHNICAL UNIVERSITY)
  • Published : 2008.03.31

Abstract

Biharmonic Legendre curves in a Sasakian space form are studied. A non-existence result in a 7-dimensional 3-Sasakian manifold is obtained. Explicit formulas for some biharmonic Legendre curves in the 7-sphere are given.

References

  1. C. Baikoussis and D. E. Blair, On the geometry of the 7-sphere, Results Math. 27 (1995), no. 1-2, 5-16 https://doi.org/10.1007/BF03322264
  2. D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, 203. Birkhauser Boston, Inc., Boston, MA, 2002
  3. R. Caddeo, S. Montaldo, and C. Oniciuc, Biharmonic submanifolds in spheres, Israel J. Math. 130 (2002), 109-123 https://doi.org/10.1007/BF02764073
  4. J. T. Cho, J. Inoguchi, and J. E. Lee, Biharmonic curves in 3-dimensional Sasakian space forms, Ann. Math. Pura Appl., to appear
  5. N. Ekmekci and N. Yaz, Biharmonic general helices in contact and Sasakian manifolds, Tensor (N.S.) 65 (2004), no. 2, 103-108
  6. D. Fetcu, Biharmonic curves in the generalized Heisenberg group, Beitrage Algebra Geom. 46 (2005), no. 2, 513-521 https://doi.org/10.1007/s12275-007-0115-6
  7. J. Inoguchi, Submanifolds with harmonic mean curvature vector field in contact 3-manifolds, Colloq. Math. 100 (2004), no. 2, 163-179 https://doi.org/10.4064/cm100-2-2
  8. G. Y. Jiang, 2-harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A 7 (1986), no. 4, 389-402
  9. Y.-Y. Kuo, On almost contact 3-structure, Tohoku Math. J. (2) 22 (1970), 325-332 https://doi.org/10.2748/tmj/1178242759
  10. S. Montaldo and C. Oniciuc, A short survey on biharmonic maps between riemannian manifolds, Rev. Un. Mat. Argentina 47 (2006), no. 2, 1-22
  11. V. Oproiu and N. Papaghiuc, Some results on harmonic sections of cotangent bundles, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 45 (1999), no. 2, 275-290
  12. T. Sasahara, Legendre surfaces whose mean curvature vectors are eigenvectors of the Laplace operator, Note Mat. 22 (2003/04), no. 1, 49-58
  13. T. Sasahara, Legendre surfaces in Sasakian space forms whose mean curvature vectors are eigenvectors, Publ. Math. Debrecen 67 (2005), no. 3-4, 285-303
  14. S. Tanno, The topology of contact Riemannian manifolds, Illinois J. Math. 12 (1968), 700-717
  15. S. Tanno, Killing vectors on contact Riemannian manifolds and fiberings related to the Hopf fibrations, Tohoku Math. J. (2) 23 (1971), 313-333 https://doi.org/10.2748/tmj/1178242648
  16. H. Urakawa, Calculus of Variations and Harmonic Maps, Translated from the 1990 Japanese original by the author. Translations of Mathematical Monographs, 132. American Mathematical Society, Providence, RI, 1993
  17. J. Eells and L. Lemaire, Selected Topics in Harmonic Maps, CBMS Regional Conference Series in Mathematics, 50. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1983
  18. C. Baikoussis, D. E. Blair, and T. Koufogiorgos, Integral submanifolds of Sasakian space forms $\bar{M}^7$, Results Math. 27 (1995), no. 3-4, 207-226 https://doi.org/10.1007/BF03322826

Cited by

  1. Slant Curves in 3-dimensional Normal Almost Contact Geometry vol.10, pp.2, 2013, https://doi.org/10.1007/s00009-012-0217-1
  2. SLANT CURVES AND PARTICLES IN THREE-DIMENSIONAL WARPED PRODUCTS AND THEIR LANCRET INVARIANTS vol.88, pp.01, 2013, https://doi.org/10.1017/S0004972712000809
  3. BIHARMONIC CURVES INTO QUADRICS vol.57, pp.01, 2015, https://doi.org/10.1017/S0017089514000172
  4. Slant and Legendre curves in Bianchi-Cartan-Vranceanu geometry vol.64, pp.4, 2014, https://doi.org/10.1007/s10587-014-0145-2
  5. Affine biharmonic submanifolds in 3-dimensional pseudo-Hermitian geometry vol.79, pp.1, 2009, https://doi.org/10.1007/s12188-008-0014-8
  6. Slant curves in three-dimensional f-Kenmotsu manifolds vol.394, pp.1, 2012, https://doi.org/10.1016/j.jmaa.2012.04.031
  7. Space-Like Slant Curves in Three-Dimensional Normal Almost Paracontact Geometry 2017, https://doi.org/10.1007/s40995-017-0232-y
  8. On some classes of biharmonic Legendre curves in generalized Sasakian space forms vol.65, pp.2, 2014, https://doi.org/10.1007/s13348-013-0093-4
  9. Slant Curves in 3-Dimensional Normal Almost Paracontact Metric Manifolds vol.11, pp.3, 2014, https://doi.org/10.1007/s00009-013-0361-2
  10. Unitary vector fields are Fermi–Walker transported along Rytov–Legendre curves vol.12, pp.10, 2015, https://doi.org/10.1142/S021988781550111X
  11. BIHARMONIC CURVES IN FINSLER SPACES vol.51, pp.6, 2014, https://doi.org/10.4134/JKMS.2014.51.6.1105
  12. Explicit formulas for biharmonic submanifolds in Sasakian space forms vol.240, pp.1, 2009, https://doi.org/10.2140/pjm.2009.240.85