DOI QR코드

DOI QR Code

ON THE ANALOGS OF BERNOULLI AND EULER NUMBERS, RELATED IDENTITIES AND ZETA AND L-FUNCTIONS

  • Kim, Tae-Kyun ;
  • Rim, Seog-Hoon ;
  • Simsek, Yilmaz ;
  • Kim, Dae-Yeoul
  • Published : 2008.03.31

Abstract

In this paper, by using q-deformed bosonic p-adic integral, we give $\lambda$-Bernoulli numbers and polynomials, we prove Witt's type formula of $\lambda$-Bernoulli polynomials and Gauss multiplicative formula for $\lambda$-Bernoulli polynomials. By using derivative operator to the generating functions of $\lambda$-Bernoulli polynomials and generalized $\lambda$-Bernoulli numbers, we give Hurwitz type $\lambda$-zeta functions and Dirichlet's type $\lambda$-L-functions; which are interpolated $\lambda$-Bernoulli polynomials and generalized $\lambda$-Bernoulli numbers, respectively. We give generating function of $\lambda$-Bernoulli numbers with order r. By using Mellin transforms to their function, we prove relations between multiply zeta function and $\lambda$-Bernoulli polynomials and ordinary Bernoulli numbers of order r and $\lambda$-Bernoulli numbers, respectively. We also study on $\lambda$-Bernoulli numbers and polynomials in the space of locally constant. Moreover, we define $\lambda$-partial zeta function and interpolation function.

Keywords

Bernoulli numbers and polynomials;zeta functions

References

  1. E. W. Barnes, On the theory of the multiple gamma functions, Trans. Camb. Philos. Soc. 19 (1904), 374-425
  2. K. C. Garret and K. Hummel, A combinatorial proof of the sum of q-cubes, Electron. J. Combin. 11 (2004), no. 1, Research Paper 9
  3. L. C. Jang and H. K. Pak, Non-Archimedean integration associated with q-Bernoulli numbers, Proc. Jangjeon Math. Soc. 5 (2002), no. 2, 125-129
  4. T. Kim, An analogue of Bernoulli numbers and their congruences, Rep. Fac. Sci. Engrg. Saga Univ. Math. 22 (1994), no. 2, 21-26
  5. T. Kim, On a q-analogue of the p-adic log gamma functions and related integrals, J. Number Theory 76 (1999), no. 2, 320-329 https://doi.org/10.1006/jnth.1999.2373
  6. T. Kim, q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), no. 3, 288-299
  7. T. Kim, An invariant p-adic integral associated with Daehee numbers, Integral Transforms Spec. Funct. 13 (2002), no. 1, 65-69 https://doi.org/10.1080/10652460212889
  8. T. Kim, On Euler-Barnes multiple zeta functions, Russ. J. Math. Phys. 10 (2003), no. 3, 261-267
  9. T. Kim, A note on multiple zeta functions, JP J. Algebra Number Theory Appl. 3 (2003), no. 3, 471-476
  10. T. Kim, Non-archimedean q-integrals associated with multiple Changhee q-Bernoulli Polynomials, Russ. J. Math. Phys. 10 (2003), no. 1, 91-98
  11. T. Kim, Remark on the multiple Bernoulli numbers, Proc. Jangjeon Math. Soc. 6 (2003), no. 2, 185-192
  12. T. Kim, Sums of powers of consecutive q-integers, Adv. Stud. Contemp. Math. (Kyungshang) 9 (2004), no. 1, 15-18
  13. T. Kim, Analytic continuation of multiple q-zeta functions and their values at negative integers, Russ. J. Math. Phys. 11 (2004), no. 1, 71-76
  14. T. Kim, A note on multiple Dirichlet's q-L-function, Adv. Stud. Contemp. Math. (Kyungshang) 11 (2005), no. 1, 57-60
  15. T. Kim, Power series and asymptotic series associated with the q-analog of the two-variable p-adic L-function, Russ. J. Math. Phys. 12 (2005), no. 2, 186-196
  16. T. Kim, Multiple p-adic L-function, Russ. J. Math. Phys. 13 (2006), 151-157 https://doi.org/10.1134/S1061920806020038
  17. T. Kim, A new approach to p-adic q-L-functions, Adv. Stud. Contemp. Math. (Kyungshang) 12 (2006), no. 1, 61-72
  18. T. Kim, On the analogs of Euler numbers and polynomials associated with p-adic q-integral on Zp at q = -1, J. Math. Anal. Appl. (2006), doi:10.1016/j.jmaa.2006.09.027 https://doi.org/10.1016/j.jmaa.2006.09.027
  19. T. Kim, A note on q-Bernoulli numbers and polynomials, J. Nonlinear Math. Phys. 13 (2006), 315-320 https://doi.org/10.2991/jnmp.2006.13.3.1
  20. T. Kim, L. C. Jang, S.-H. Rim, and H.-K. Pak, On the twisted q-zeta functions and q-Bernoulli polynomials, Far East J. Appl. Math. 13 (2003), no. 1, 13-21
  21. J. Satho, q-analogue of Riemann's ${\zeta}$-function and q-Euler numbers, J. Number Theory 31 (1989), no. 3, 346-362 https://doi.org/10.1016/0022-314X(89)90078-4
  22. M. Schlosser, q-analogues of the sums of consecutive integers, squares, cubes, quarts and quints, Electron. J. Combin. 11 (2004), no. 1, Research Paper 71
  23. K. Shiratani and S. Yamamoto, On a p-adic interpolation function for the Euler numbers and its derivatives, Mem. Fac. Sci. Kyushu Univ. Ser. A 39 (1985), no. 1, 113-125
  24. Y. Simsek, Theorems on twisted L-functions and twisted Bernoulli numbers, Adv. Stud. Contemp. Math. 11 (2005), no. 2, 205-218
  25. Y. Simsek, Twisted (h, q)-Bernoulli numbers and polynomials related to (h, q)-zeta function and L-function, J. Math. Anal. Appl. 324 (2006), 790-804 https://doi.org/10.1016/j.jmaa.2005.12.057
  26. Y. Simsek, D. Kim, T. Kim, and S.-H. Rim, A note on the sums of powes of consecutive q-integers, J. Appl. Funct. Different Equat. 1 (2006), 63-70
  27. Y. Simsek and S. Yang, Transformation of four Titchmarsh-type infinite integrals and generalized Dedekind sums associated with Lambert series, Adv. Stud. Contemp. Math. (Kyungshang) 9 (2004), no. 2, 195-202
  28. H. M. Srivastava, T. Kim, and Y. Simsek, q-Bernoulli multiple q-zeta functions and basic L-series, Russ. J. Math. Phys. 12 (2005), no. 2, 241-268
  29. K. Iwasawa, Lectures on p-adic L-function, Annals of Mathematics Studies, No. 74. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972

Cited by

  1. On a class of generalized q-Bernoulli and q-Euler polynomials vol.2013, pp.1, 2013, https://doi.org/10.1186/1687-1847-2013-115
  2. p-Adic distribution of the unification of the Bernoulli, Euler and Genocchi polynomials vol.218, pp.3, 2011, https://doi.org/10.1016/j.amc.2011.01.075
  3. New families of special numbers and polynomials arising from applications of p-adic q-integrals vol.2017, pp.1, 2017, https://doi.org/10.1186/s13662-017-1273-4
  4. A family of p-adic twisted interpolation functions associated with the modified Bernoulli numbers vol.216, pp.10, 2010, https://doi.org/10.1016/j.amc.2010.04.010
  5. Notes on generalization of the Bernoulli type polynomials vol.218, pp.3, 2011, https://doi.org/10.1016/j.amc.2011.03.086
  6. A unified presentation of the generating functions of the generalized Bernoulli, Euler and Genocchi polynomials vol.60, pp.10, 2010, https://doi.org/10.1016/j.camwa.2010.09.031
  7. Analysis of the p-adic q-Volkenborn integrals: An approach to generalized Apostol-type special numbers and polynomials and their applications vol.3, pp.1, 2016, https://doi.org/10.1080/23311835.2016.1269393
  8. A set of finite order differential equations for the Appell polynomials vol.259, 2014, https://doi.org/10.1016/j.cam.2013.08.006
  9. On the von Staudt–Clausen's theorem related to q-Frobenius–Euler numbers vol.159, 2016, https://doi.org/10.1016/j.jnt.2015.07.025
  10. A unified presentation of three families of generalized Apostol type polynomials based upon the theory of the umbral calculus and the umbral algebra vol.133, pp.10, 2013, https://doi.org/10.1016/j.jnt.2013.03.004
  11. Higher-order Euler-type polynomials and their applications vol.2013, pp.1, 2013, https://doi.org/10.1186/1687-1812-2013-40
  12. On a class of q-Bernoulli and q-Euler polynomials vol.2013, pp.1, 2013, https://doi.org/10.1186/1687-1847-2013-108
  13. Applications on the Apostol-Daehee numbers and polynomials associated with special numbers, polynomials, and p-adic integrals vol.2016, pp.1, 2016, https://doi.org/10.1186/s13662-016-1041-x
  14. q-Bernstein polynomials related to q-Frobenius-Euler polynomials, l-functions, and q-Stirling numbers vol.35, pp.8, 2012, https://doi.org/10.1002/mma.1580
  15. Values of twisted Barnes zeta functions at negative integers vol.20, pp.2, 2013, https://doi.org/10.1134/S1061920813020015
  16. A New Class of Laguerre-based Generalized Apostol Polynomials vol.57, pp.1, 2016, https://doi.org/10.1515/fascmath-2016-0017
  17. q-Dirichlet type L-functions with weight α vol.2013, pp.1, 2013, https://doi.org/10.1186/1687-1847-2013-40
  18. Generating functions for generalized Stirling type numbers, Array type polynomials, Eulerian type polynomials and their applications vol.2013, pp.1, 2013, https://doi.org/10.1186/1687-1812-2013-87
  19. An Identity in Commutative Rings with Unity with Applications to Various Sums of Powers vol.2017, 2017, https://doi.org/10.1155/2017/9092515
  20. A unified presentation of certain meromorphic functions related to the families of the partial zeta type functions and the L-functions vol.219, pp.8, 2012, https://doi.org/10.1016/j.amc.2012.10.025
  21. Construction of Fourier expansion of Apostol Frobenius–Euler polynomials and its applications vol.2018, pp.1, 2018, https://doi.org/10.1186/s13662-018-1526-x
  22. Formulas for Poisson–Charlier, Hermite, Milne-Thomson and other type polynomials by their generating functions and p-adic integral approach pp.1579-1505, 2018, https://doi.org/10.1007/s13398-018-0528-6
  23. Identities and recurrence relations of special numbers and polynomials of higher order by analysis of their generating functions vol.2018, pp.1, 2018, https://doi.org/10.1186/s13660-018-1815-7
  24. Construction method for generating functions of special numbers and polynomials arising from analysis of new operators pp.01704214, 2018, https://doi.org/10.1002/mma.5207
  25. Identities associated with Milne–Thomson type polynomials and special numbers vol.2018, pp.1, 2018, https://doi.org/10.1186/s13660-018-1679-x
  26. Unified representation of the family of L-functions vol.2013, pp.1, 2013, https://doi.org/10.1186/1029-242X-2013-64
  27. Partial Hecke-type operators and their applications vol.2013, pp.1, 2013, https://doi.org/10.1186/1687-2770-2013-46
  28. On interpolation functions for the number of k-ary Lyndon words associated with the Apostol–Euler numbers and their applications vol.113, pp.1, 2019, https://doi.org/10.1007/s13398-017-0471-y