Hydraulic Behavior Affecting the Safety of Reflected Breakwater

Sung Duk Kim
Department of Civil and Environmental Engineering, Cheongju University
(Received June 13, 2008 / Accepted August 20, 2008)

Abstract: A reflected breakwater can be affected by wave pressure and power because it is to be concentrated by wave energy. The present study is to estimate hydraulic behavior affecting around a reflected breakwater, which is discontinuity cases and various angle of corner at the breakwater. The numerical model to investigate wave diffraction, which is important hydraulic factor in the ocean, is performed by using direct boundary element method. The present numerical results are compared with the solutions of approximate and absolute based on an eigenfunction, and the solution of analytical by Fresnel integral. The results of the present numerical simulation agreed well with those of the published numerical and analytical data. As a result of this study, wave height is high at the corner of breakwater, and it is to be high if angle of corner at the reflected breakwater is small.

Key Words: reflected breakwater, hydraulic behavior, wave diffraction, direct boundary element method, eigenfunction, fresnel integral

1. 서 론

우각부를 갖는 범파제는 파랑의 집중현상을 유발하여 파랑에너지가 집중된다. 이는 보다 큰 파랑과 파랑이 제간부의 안전성에 영향을 미칠 수 있는 요인이된다. 또한, 우각부 범파제는 파랑의 임상행에 대하여 임상파와 반상파의 간섭 등으로 인하여 임상파상 범파제의 경우에 비하여 파고가 보다 더 높아질 수 있다. 이것은 바로 범파제에 작용하는 파랑이나 파랑을 충돌시키는 요인이 되며, 범파제의 안전성에 영향을 준다. 따라서 우각부를 갖는 범파제의 경우에 대하여 범파제 전면에서의 안전성에 영향을 미치는 파고의 예측을 신중히 검토할 필요가 있다.

임상파상의 범파제에 대한 파랑의 화경이나 반사 등의 예측은 Sommerfeld의 해를 도입한 Penny와 Price의 이론에 의하여 구할 수 있다. 범파제의 우각부에 대한 검토를 위하여, 유한한 간염의 범파제 전면에서의 반사율, 재이동 등을 적용한 Dang와 Haupt의 연구에 의하여 본 연구의 수치모델을 검증하였다.

2. 이 론

2.1. 지배방정식
우각부를 갖는 방파제의 전면에 수심 \(h \)인 곳에 규칙파가 입사하는 것을 가정한다. 정수면상에 \(x, y \)축, 그리고 연직상향으로 \(z \)축을 취한다. Fig. 1의 나타낸 것과 같이 방파제의 주위를 \(S \)로 나타낸다. 방파제의 전면은 유동물력이나 소파구조물이 설치되어 있는 반반을 \(K \)로 갖는 것으로 한다. 즉, 1~45는 방파제 전면에서의 제산지점을 나타낸다.

유체의 성질을 비정상, 비압축성 그리고 유체의 자연 운동을 비정상으로 가정하면 식 (1)의 속도 포텐셜이 존재하고, 이것은 식 (2)와 같이 Laplace 방정식을 만족해야 한다.

\[
\n\n\phi(x,y,z,t) = \phi(x,y,z)e^{-\alpha t}
\]

여기서, \(\sigma \)는 각주파수(= \(2\pi/T \)), \(T \)는 주기, \(\alpha \)는 시간이다. 또한 \(\phi(x,y,z) \)는 시간과 독립인 공간 속도 포텐셜이다.

\[
V^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0
\]

속도포텐셜의 해를 구하기 위하여 다음과 같이 경계조건을 설정한다.

\[
\left. \left(\frac{\partial^2 \phi}{\partial x^2} \right) \right|_{z=0} = 0 \quad \left(\frac{\partial \phi}{\partial z} \right) \left|_{z=h} = 0 \right.
\]

\[
\left. \left(\frac{\partial \phi}{\partial z} \right) \right|_{z=-h} = 0
\]

\[
\frac{\partial \phi}{\partial z} + \alpha \phi = 0
\]

가 된다. 여기서, \(g \)는 중력가속도, \(\alpha \)는 복소수최적치수(complex transmission coefficient)이다(Isaacson과 Qu\(^6\)), 위의 경계조건을 만족하는 속도포텐셜의 일 반해는 다음과 같이 얻어진다.

\[
\phi(x,y,z) = \frac{g_0}{\sigma} \cdot f(x,y) \cdot \frac{\cosh(h+z)}{\cosh(h)} \tag{6}
\]

\(g_0 \)는 입사파의 진폭, \(k \)는 파수(=2\(\pi/L \)), \(L \)은 파장이며, 식 (7)의 분산관계식으로부터 구할 수 있다.

\[
k h \tanh(kh) = \frac{\sigma^2 h}{g} \tag{7}
\]

또한, \(f(x,y) \)는 입사파, 반사파 및 산란파를 표시하는 파동함수이다. 이 파동함수를 각각의 성분으로 나타내면, 식 (8)과 같이 나타낼 수 있다.

\[
f(x,y) = f_1(x,y) + f_2(x,y) + f_3(x,y) \tag{8}
\]

여기서 입사파와 반사파는 다음과 같다.

\[
f_1(x,y) = -ie^{ik(x \cos \theta + y \sin \theta)} \tag{9}
\]

\[
f_2(x,y) = -ie^{ik(x \cos \theta - y \sin \theta)} \tag{10}
\]

따라서, 산란에 의한 산란파 파동함수를 구하면 방파제에 의한 회절, 반사등을 구할 수 있게 된다. 회절영역의 입의지점 \((x,y)\)에서의 \(f_s(x,y) \)는 Green 제2정리를 이용하여 다음과 같이 구할 수 있다.

\[
f_s(x,y) = \int_{S} \left(\frac{\partial f}{\partial \eta} \left(\frac{i}{4} H_0^{(1)}(Kr) \right) \right) \frac{\partial f_s}{\partial \eta} \left(\frac{i}{4} H_0^{(1)}(Kr) \right) d\Gamma \tag{11}
\]

\[
f_s(x,y) = \int_{S} \left(\frac{\partial f_s}{\partial \eta} \left(\frac{i}{4} H_0^{(1)}(Kr) \right) \frac{\partial f}{\partial \eta} \left(\frac{i}{4} H_0^{(1)}(Kr) \right) \right) ds \tag{12}
\]

반사율 \(K \)를 고려하면 식 (11) 및 식 (12)는 다음과 같이 된다(小川와 大里\(^6\), Lee와 Williams\(^8\)).

\[
f_s(x,y) = \int_{S} \left(\frac{\partial f_s}{\partial \eta} \left(\frac{i}{4} H_0^{(1)}(Kr) \right) \right) \frac{\partial f_s}{\partial \eta} \left(\frac{i}{4} H_0^{(1)}(Kr) \right) K \left(\frac{i}{4} H_0^{(1)}(Kr) \right) d\Gamma \tag{13}
\]
\[f_s(x,y) = -\frac{1}{2} \int [f_s(\xi,\eta) \cdot \frac{\partial}{\partial n} \left(-\frac{1}{2} iH_n^1(kr) \right) \\
- Kr \frac{\partial}{\partial n} f_s(\xi,\eta)] ds \]
\tag{14}

여기서, \((\xi,\eta)\)는 경계선 S 상의 점의 좌표, \(\partial/\partial n\)은 Fig. 1에 표시한 위치의 법선 방향의 도함수,
\(H_n^1(kr)\)는 제 1종 0차의 Hankel 함수이다. 또한, \(r\)은 내역의 임의의 지점 \((x_0)\)와 경계선의 \((\xi,\eta)\)점과의 거리로서 식 (15)로 주어진다.

\[r = \sqrt{(x-x_0)^2 + (y-y_0)^2} \]
\tag{15}

결국, 파의 산란하인 \(f_s(\xi,\eta)\)의 값을 결정하여 회절계수 \((\text{wave diffraction})\)를 다음과 같이 나타낼 수 있다. 이 회절계수 또는 회절파고비는 방파제 설계시 안정성계파고 산정에 기여할 수 있는 수리학적 인자이다.

\[K_s = |f_s(x,y) + f_s(x,y)| \]
\tag{16}

3. 결과 및 고찰
3.1. 수치모델의 검증
본 연구에서 사용한 수치모델은 방파제가 해안에 건설될 때 방파제 혹은 구조물의 형상을 임의로 설정할 수 있고, 임의의 평면 형태에 대하여 적용할 수 있는 특징을 가지고 있다. 소파불록이나 유공방파제 등의 설치로 방파제(구조물) 경계에서 반사의 변화가 발생할 임의의 값을 줄 수 있으며, 더 나아가 방파제의 구간별로 서로 다른 반사율을 줄 수도 있다. 따라서, 본 연구 수치모델의 검증을 위하여 소동과 대미계의 연구결과와 비교 및 검증을 실시하였다. 소동과 대미계가 사용한 이론은 고유함수의 수치해 및 엉질해, 그리고 Frenel 직선의 해석해 \((\text{Analytical solution})\)로서 3중류의 해법을 사용하였다. 소동과 대미계는 일직선상의 완전반사 혹은 작업방파제에 있어서 방파제 길이 \(B/L = 3.0(\text{입사각도} \times 30^\circ)\)에 대하여 30, 60, 90\(^\circ\)의 입사각으로 입사각도 채중에서 방파제전면에서 회절파고를 조사하였다.

Fig. 2는 입사각도가 90\(^\circ\)인 경우를 나타낸다. Fig. 2에서 보면 작업 방파제 전면에서 완전반사에 의해 중복파가 형성되고 회절파고비 \(K_s\)는 2.0의 값을 기준으로 증감을 나타내고 있다. 또한, 방파제의 중앙점에 기준으로 대칭형을 나타내고 있다. 본 연구에서는 \(\text{symbol}\)을 사용하여 Fig. 2에 나타내었다. 본 연구의 결과와 소동과 대미계의 결과와 비교, 분석한 결과, 매우 탐색한 일치를 보이고 있다.

Fig. 3은 입사각도가 60\(^\circ\)인 경우이며, 방파제 전면에서는 완전중복파에서 경사중복파로 형성되기 때문에 방파제 안정 설계에 영향을 미치는 회절파고비가 90\(^\circ\)인 경우보다 낮게 형성되었다. 즉, \(K_s\) 값은 2.0을 중심으로 높고 방파제 중앙 부근에서 낮은 회절파고비가 나타나고 있지만, 방파제 전면 좌측과 우측에서는 큰 회절파고비를 나타냈다. 본 연구의 결과를 비교, 분석한 결과, 입사각도 60\(^\circ\)의 경우에도, 매우 탐색한 일치를 보이고 있고, 경사각의 입사각에도 적용 가능한 모형임을 나타내주고 있다.

입사각 30\(^\circ\)의 경우도 동일한 조건으로 조사하였고, 입사각이 작을수록 경사중복파 형성에 따라 파 형성성이 증가하는 동, 파고비는 방파제전면의 좌우 양쪽에 1.5배의 차이를 나타내고 있음을 보여주고 있다.
고 있다(Fig. 4). 이는 입사각도가 작을수록 방파체의 좌측부근에서 안전성에 영향을 미치는 회절과 고비 값이 높게 나타난다는 것을 의미한다. 이 경우에도, 작고의 대류2)의 연구결과와 매우 일치하고 있다.

위 그림들에서 보면, 방파체 전면이 완전반사 ($Kr = 1.0$)인 경우 즉석성의 방파체에 대하여 본 연구의 수치모델과 기존의 연구결과와 잘 일치하고 있다. 따라서, 본 연구의 수치모형은 즉석성의 방파체 경우와 모든 입사각에 대하여 정도 크게 활용할 수 있다.

3.2. 우각부 각도 변화에 따른 결과분석

우각부 방파체 제계각의 변화에 따른 방파체 전면에서 방파체 안전성에 영향을 미치는 회절 고피를 조사하였다. 계산조건은 방파체 전면에서의 반사율 $Kr = 0.8$ 로 하고 우각부를 중심으로 각각의 각을 동일하게 4가지(B/L = 1.0, 2.0, 3.0)의 구조물로 하였으며, $45^\circ, 60^\circ, 90^\circ$ 로 하였다. Fig. 5(a), (b), (c)는 각각 우각부 방파체 제계각이 $160^\circ, 135^\circ, 120^\circ$인 경우의 방파체 전면에서의 고피분포를 나타낸다.

Fig. 5(a)는 우각부의 제계각이 160°인 경우이다. 이 경우 135°과 120°인 경우보다 높은 고피분포를 나타냈다. 즉, 회절 고피가 1.2를 나타내었고, 고피의 차이가 3가지 제계각의 경우 중 가장 낮게 나타났다. 입사방향에 따른 차이는 크게 나타나지 않았다.

Fig. 5(b)는 우각부의 제계각이 135°인 경우이다. 이 경우 제계각이 120°인 경우보다 높은 고피분포를 나타내지만, 우각부 Coner 부근을 기점으로 45도 입사각이 경우 좌측 부분에서 고피의 증폭을 이 우측보다 높게 나타냈고, 입사각이 90도일 경우는 그 반대현상이 나타났다. 또한, 전반적으로 회절 고피가 1.0~3.0을 나타냈고, 그 차이는 제계각의 경우보다 상당히 높게 나타났다.

Fig. 5(c)는 우각부의 제계각이 120°인 경우의 고피분포를 나타낸다. 이 경우 방파체의 Coner 부근을 기점으로 좌측 부분에서 고피의 증폭율이 넓게 나타났고, 고피의 차이도 제계각 중 가장 높은 비율을 나타냈다.

우각부 방파체의 제계각 변화에 따른 고피분포를 비교하면, 제계각이 작을수록 우각부 전면 부근에서의 회절 고피의 증폭률과 회절 고피가 높게 나타났고, 변곡점 부근에서의 고피의 차이가 크게 나타났다. 이는 우각부 방파체 설치시 안전성에 영향을 미치는 회절 고피와 안전성에 영향을 미치는 회절 고피를 조사하였습니다. 계산조건은 방파체 전면에서의 제계각으로 반사율 $Kr = 0.4$와 $Kr = 1.0$으로 각각 취하고, 3방향의 입사각에 대하여 수치계산을 실시하였다. 또한, 우각부의 각도는 3.2절에서 제일 안정적으로 나타낸 각도인 160도로 설정하였다. x축의 격자번호 33번이 우각부를 나타내고 격자번호 33번 이후 45번까지는 굴절부 방파체를 나타낸다(Fig. 6).

Fig. 6은 우각부 전면에서 조사한 결과를 정리한 것이다. Fig. 6에서 보면 우각부(No. 33)에서 방파체 안전성에 영향을 미치는 회절 고피가 높게 나타났고, E방향과 ENE방향의 입사각은 NNE 방향 입사 파보다 고피가 높게 나타났다. 이는 우각부 부근에서 파랑이 굴절되면서 파고의 증폭이 증대하였음에 따라

Fig. 5. Wave-height distributions(B/L = 4.0, K = 0.8), (reflected angle of breakwater : (a) 160° (b) 135° (c) 120°).

3.3. 우각부 전면에서의 고피분포(반사율)

반사율의 변화, 즉 소파제를 설치한 경우(반사율)와 소파제를 설치하지 않은 경우(완전반사)에 따른 우각부 방파체 전면에서의 안전성에 영향을 미치는 회절 고피를 조사하였다. 계산조건은 방파체 전면에서의 제계각으로 반사율 $Kr = 0.4$와 $Kr = 1.0$으로 각각 취하고, 3방향의 입사각에 대하여 수치계산을 실시하였다. 또한, 우각부의 각도는 3.2절에서 제일 안정적으로 나타낸 각도인 160도로 설정하였다. x축의 격자번호 33번이 우각부를 나타내고 격자번호 33번 이후 45번까지는 굴절부 방파체를 나타낸다(Fig. 6).

Fig. 6은 우각부 전면에 소파제를 설치한 경우이다. Fig. 6에서 보면 우각부(No. 33)에서 방파체 안전성에 영향을 미치는 회절 고피가 높게 나타났고, E방향과 ENE방향의 입사각은 NNE 방향 입사 파보다 고피가 높게 나타났다. 이는 우각부 부근에서 파랑이 굴절되면서 파고의 증폭이 증대하였음을

94

우각부 방파제의 안전성에 영향을 미치는 수리학적 기동

Fig. 6. Wave-height distributions of regular waves at the front face of a refracted breakwater with $Kr=0.4$.

Fig. 7. Wave-height distributions of regular waves at the front face of a refracted breakwater with $Kr=1.0$.

기 때문이시다. 이 경우 회절 파고비가 1.0이상 최대 2.0까지 분포하였다.

Fig. 7은 우각부 전면에 소파제를 설치하지 않은 경우가 Fig. 7에서 보면 소파제를 설치한 경우보다 방파제의 안전성에 영향을 미치는 회절 파고비가 상당히 높게 나타났고, 우각부(No. 33) 지점에서의 변곡점이 나타났으며 파고의 증감이 상당히 크게 나타났다. 이는 소파제가 없는 경우보다 우각부 방파제의 안전성 확보가 어렵게 됐다는 것을 의미한다.

3.4. 우각부 배후면에서의 파고분포(반사율)

반사율의 변화에 따른 우각부 방파제 배후면에서의 회절 파고비를 조사하였다. 계산조건은 방파
제 배후면에서 반사율 $Kr=0.4$와 $Kr=1.0$으로 각각 취하고, 3방향의 임사파에 대하여 수치계산을

실시하였다. 계산지점은 우각부 배후의 “O”로 표시하였다(Fig. 8).

Fig. 9는 우각부 배후면에 소파제를 설치한 경우이다. Fig. 9에서 보면 방파제에 의한 파랑 제어로 전반적으로 높은 파고를 형성하지만, 우각부(No. 34)를 기점으로 우측 부근에서 파고가 약간 증가하고 있음을 알 수 있다.

Fig. 10은 우각부 배후면에 소파제를 설치하지 않은 경우이다. Fig. 10에서 보면 소파제를 설치한 경우보다 배후면에서의 회절파고비가 높게 나타났다. E방향과 ENE방향에서 파고의 증폭이 높게 나타났으며, NNE방향에서는 우각부(No. 33)에서 변곡점의 차이가 크게 나타났다. 이는 우각부 부근에서 회절 파고비의 차이가 크게 나타나며, 안전성이 도 영향을 미친다는 것을 발견할 수 있다.

4. 결론

본 연구는 외식에서 파랑이 입사할 때 우각부를 갖는 방파제에 영향을 미치는 수리학적 기동, 즉 회절 파고비를 조사하였다. 우선, 본 연구의 수지 모형을 적절하고, 본 연구의 결과를 비교 검토하였고, 그 결과는 다음과 같다. 우각부 방파제의 계체간 변화에 따른 파고분포를 비교
할면, 제계각이 작업수록 우각부 부근에서 외절 파고의 중폭들이 높게 나타났고, 이는 우각부파괴체의 안전성에 영향을 미친다는 것을 의미한다.

우각부 파괴체 전면 및 배후면에서 소파체가 설치된 경우에도 파괴체 전면에서는 외절파고비가 크게 나타났고, 배후면에서도 우각점 부근에서 약간의 파고 중폭이 나타났다. 소파체가 설치되지 않은 경우는 상당히 높은 외절파고비의 중폭이 나타났고, 변곡점에서의 중폭들의 차이가 크게 나타났다. 이 차이는 결국 파괴체의 안전에 영향을 미치게 된다. 본 연구는 우각부 파괴체 설치시 제계각, 임사각 및 반사율에 따른 외절파고비를 예측하는 데 유용하게 사용될 것으로 기대된다. 향후 우각부 파괴체의 안전성을 확보하기 위하여 우각부 부근에 다량의 소파체를 설치하거나 외피에서의 파 에너지를 저감하는 설계에도 유용하게 사용될 것으로 기대된다.

참고문헌

