Transport Properties of Polymer Blend Membranes of Sulfonated and Nonsulfonated Polysulfones for Direct Methanol Fuel Cell Application

  • Kim, Dong-Hwee (Polymer Engineering Laboratory, Department of Chemical and Biomolecular Engineering (BK-21 Program), Korea Advanced Institute of Science and Technology) ;
  • Kim, Sung-Chul (Polymer Engineering Laboratory, Department of Chemical and Biomolecular Engineering (BK-21 Program), Korea Advanced Institute of Science and Technology)
  • Published : 2008.07.31


The relation between the phase separated morphologies and their transport properties in the polymer blend membrane for direct methanol fuel cell application was studied. In order to enhance the proton conductivity and reduce the methanol crossover, sulfonated poly(arylene ether sulfone) copolymer, with a sulfonation of 60 mol% (sPAES-60), was blended with nonsulfonated poly(ether sulfone) copolymer (RH-2000, Solvay). Various morphologies were obtained by varying the drying condition and the concentration of the casting solution (10, 15, 20 wt%). The transport properties of proton and methanol molecule through the polymer blend membranes were studied according to the absorbed water. AC impedance spectroscopy was used to measure the proton conductivity and a liquid permeability measuring instrument was designed to measure the methanol permeability. The state of water in the blend membranes was confirmed by differential scanning calorimetry and was used to correlate the morphology of the membrane with the membrane transport properties.


  1. B. H. Steele and A. Heinzel, Nature, 414, 345 (2001)
  2. K. Kordesch and G. Simader, Fuel cells and Their Applications, VCH Publishers Inc., New York, 1996
  3. X. Ren, T. E. Springer, T. A. Zawodzinski, and S. Gottesfeld, J. Electrochem. Soc., 147, 466 (2000)
  4. S. Hikita, K. Yamane, and Y. Nakajima, JSAE Rev., 22, 151 (2001)
  5. J. Choi, I. T. Kim, S. C. Kim, and Y. T. Hong, Macromol. Res., 13, 514 (2005)
  6. J. C. Woong, S. Venkataramani, and S. C. Kim, Polym. Int., 55, 491 (2006)
  7. S. Swier, M. T. Shaw, and R. A. Weiss, J. Membr. Sci., 270, 22 (2006)
  8. K. D. Kreuer, J. Membr. Sci., 185, 29 (2001)
  9. J. T. Wang, J. S.Wainright, R. F. Savinell, and M. Litt, J. Appl. Electrochem., 26, 751 (1996)
  10. Y. Fu, A. Manthiram, and M. D. Guiver, Electrochem. Comm., 8, 1386 (2006)
  11. D. H. Kim, J. Choi, Y. T. Hong, and S. C. Kim, J. Membr. Sci., 299, 19 (2007)
  12. J. Won, J. Y. Yoo, M. -S. Kang, and Y. S. Kang, Macromol. Res., 14, 449 (2006)
  13. H. D. Cho, J. Won, H. Y. Ha, and Y. S. Kang, Macromol. Res., 14, 214 (2006)
  14. J. Li, C. H. Lee, H. B. Park, and Y. M. Lee, Macromol. Res., 14, 438 (2006)
  15. G. Y. Moon and J. W. Rhim, Macromol. Res., 15, 379 (2007)
  16. D. Seeliger, C. Hartnig, and E. Spohr, Electrochim. Acta, 50, 4234 (2005)
  17. C. Manca, C. Tanner, and S. Leutwyler, Int. Rev. Phys. Chem., 24, 457 (2005)
  18. W. Xu and C. A. Angell, Science, 302, 422 (2003)
  19. S. L. Chen, A. B. Bocarsly, and J. Benziger, J. Power Sources, 152, 27 (2005)
  20. Y. S. Kim, L. Dong, M. A. Hickner, T. E. Glass, V. Webb, and J. E. McGrath, Macromolecules, 36, 6281 (2003)
  21. B. S. Pivovar, Y. Wang, and E. L. Cussler, J. Membr. Sci., 154, 155 (1999)
  22. W. L. Harrison, M. A. Hickner, Y. S. Kim, and J. E. McGrath, Fuel Cells, 2, 201 (2005)
  23. R. Y. Huang, P. Shao, X. Feng, and C. M. Burns, J. Membr. Sci., 192, 115 (2001)
  24. A. Siu, B. Pivovar, J. Horsfall, K. V. Lovell, and S. Holdcroft, J. Polym. Sci. B, 44, 2240 (2006)
  25. A. Geoffrey, Electrochemical Engineering Principles, Prentice Hall, New Jersey, 1990
  26. M. Saito, N. Arimura, K. Hayamizu, and T. Okada, J. Phys. Chem. B, 108, 16064 (2004)