A Study of Photo-electric Efficiency Improvement using Ultrasonic and Thermal Treatment on Photo-electrode of DSC

염료감응형 태양전지 광전극의 초음파 열처리를 통한 광전효율 개선에 관한 연구

  • 김희제 (부산대학 전자전기공학과) ;
  • 김용철 (부산대학 전자전기공학과) ;
  • 최진영 (부산대학 전자전기공학과) ;
  • 김호성 (부산대학 전자전기공학과) ;
  • 이동길 (부산대학 전자전기공학과) ;
  • 홍지태 (부산대학 전자전기공학과)
  • Published : 2008.05.01

Abstract

A making process of DSC(dye sensitized solar cell) was presented. In general, Photo electrodes of DSC was made by using colloid paste of nano $TiO_2$ and processing of Doctor-blade printing and high temperature sintering for porous structure. These methods lead to cracks on $TiO_2$ surface and ununiform of $TiO_2$ thickness. This phenomenon is one factor that makes low efficiency to cells. After $TiO_2$ printing on TCO glass, a physical vibration was adapted for reducing ununiform of $TiO_2$ thickness. And a thermal treatment at low temperature(under $75^{\circ}C$) was adapted for reducing cracks on $TiO_2$ surface. In this paper, we have designed and manufactured an ultrasonic circuit (100W, frequency and duty variable) and a thermal equipment. Then, we have optimized forcing time, frequency and duty of ultrasonic irradiation and thermal heating for surface treatment of photo-electrode of DSC. In I-V characteristic test of DSC, ultrasonic and thermal treated DSC shows 19% improved its efficiency against monolithic DSC. And it shows stability of light-harvesting from drastically change of light irradiation test.

Keywords

Dye sensitized solar cell;Photovoltaic;Ultra sonic;Thermal;Surface treatment

References

  1. D. Gutierrez-Tauste et al, Journal of Photochemistry and Photobiology A: Chemistry, Volume 175(2005) 165-171 https://doi.org/10.1016/j.jphotochem.2005.04.031
  2. W. Guiqiang, L. Ruifeng. Electrochemica Acta 50 (2005) 5546-5552
  3. P. Laurence. Journal of Electroanalytical Chemistry 559 (2007) 233-240
  4. C.J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Gratzel, J. Am. Ceram. Soc. 80 (1997) 3157-3171
  5. Mi Yeon Song et al. Syntheic Metal 155 (2005) 635-638
  6. Xiaoming Fang, Tingli Ma, Guoqing Guan, Morito Akiyama, Tetsya Kida and Eiichi Abe. Journal of Electroanalytical Chemistry, Volume 570, Issue 2, 1 (2004) 257-263 https://doi.org/10.1016/j.jelechem.2004.04.004
  7. Man Gu Kang et al. Solar Energy Materials and Solar Cells, vol. 90, Issue 5, (2006) 574-581
  8. J. N. Hart, R. Cervini, Y. -B. Cheng, G. P. Simon and L. Spiccia. Solar Energy Materials and Solar Cells, Volume 84, Issues 1-4, (2004) 135-143 https://doi.org/10.1016/j.solmat.2004.02.041
  9. D.H. Kim, H.W. Ryu, Journal of Power Sources 163 (2006) 196-200 https://doi.org/10.1016/j.jpowsour.2005.12.060
  10. A. Hagfeldt, G. Boschloo, H. Lindstrom, E.Figgemeier, A. Holmberg,V. Aranyos, E. Magnusson, L. Malmqvist, Coord. Chem. Rev. 248 (2004) 1501-1509
  11. Nam Kyu Park. Chemical world, 07 (2006) 74-83
  12. G. K. Kiema, M. J. Colgan and M. J. Brett. Solar Energy Materials and Solar Cells, Volume 85, Issue 3, 31 (2005) 321-331