Effects of In Situ YAG on Properties of the Pressurless Annealed Sic-$TiB_2$ Electroconductive Ceramic Composites

무가압 어닐드한 Sic-$TiB_2$ 전도성 복합체의 특성에 미치는 In Situ YAG의 영향

  • 신용덕 (원광대 공과대학 전기공학과) ;
  • 주진영 (원광대 공과대학 전기공학과) ;
  • 고태헌 (원광대 공과대학 전기공학과)
  • Published : 2008.05.01

Abstract

The composites were fabricated 61[vol.%] ${\beta}$-SiC and 39[vol.%] $TiB_2$ powders with the liquid forming additives of 8, 12, 16[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid by pressureless annealing at 1650[$^{\circ}C$] for 4 hours. The present study investigated the influence of the content of $Al_2O_3+Y_2O_3$ sintering additives on the microstructure, mechanical and electrical properties of the pressureless annealed SiC-$TiB_2$ electroconductive ceramic composites. Reactions between SiC and transition metal $TiB_2$ were not observed in the microstructure and the phase analysis of the pressureless annealed SiC-$TiB_2$ electroconductive ceramic composites. Phase analysis of SiC-$TiB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), ${\beta}$-SiC(3C), $TiB_2$, and In Situ YAG($Al_2Y_3O_{12}$). The relative density of SiC-$TiB_2$ composites was lowered due to gaseous products of the result of reaction between SiC and $Al_2O_3+Y_2O_3$. There is another reason which pressureless annealed temperature 1650[$^{\circ}C$] is lower $300{\sim}450[^{\circ}C]$ than applied pressure sintering temperature $1950{\sim}2100[^{\circ}C]$. The relative density, the flexural strength, the Young's modulus and the Vicker's hardness showed the highest value of 82.29[%], 189.5[Mpa], 54.60[Gpa] and 2.84[Gpa] for SiC-$TiB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature. Abnormal grain growth takes place during phase transformation from ${\beta}$-SiC into ${\alpha}$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. The electrical resistivity showed the lowest value of 0.0117[${\Omega}{\cdot}cm$] for 16[wt%] $Al_2O_3+Y_2O_3$ additives at 25[$^{\circ}C$]. The electrical resistivity was all negative temperature coefficient resistance (NTCR) in the temperature ranges from $25^{\circ}C$ to 700[$^{\circ}C$]. The resistance temperature coefficient of composite showed the lowest value of $-2.3{\times}10^{-3}[^{\circ}C]^{-1}$ for 16[wt%] additives in the temperature ranges from 25[$^{\circ}C$] to 100[$^{\circ}C$].

Keywords

YAG($Al_5Y_3O_{12}$;);Liquid-Phase-Sintered(LPS);Electroconductive ceramic composite;PTCR;Transition metal $TiB_2$$ZrB_2$

References

  1. Y. D. Shin, J. Y. Ju, K. S. Choi, S. S. Oh and J. H.Seo, "Effect of Annealing Temperature on the Properties of $\beta$-SiC-TiB2 Electrocondutive CeramicComposites by Spray Dry", Trans. KIEE, Vol. 52C[8], pp. 335-341, 2003
  2. L. K. L. Falk, "Microstructural Development during Liquid Phase Sintering of Silicon Carbide Ceramics", Journal of the European Ceramic Society, 17. pp. 983-994, 1997 https://doi.org/10.1016/S0955-2219(96)00198-7
  3. Frederic Monteverde and Alida Bellosi, "Beneficial Effects of AlN as Sintering Aid on Microstructure and Mechanical Properties of Hot-pressed ZrB2", Advanced Engineering Materials, 5[7], pp. 508-512, 2003 https://doi.org/10.1002/adem.200300349
  4. Da Chen, Xiao-Feng Zhang and Robert O. Ritchie, "Effects of Grain-Boundary Structure on the Strength, Toughness, and Cyclic-Fatigue Properties of a Monolithic Silicon Carbide", J. Am. Ceram. Soc., 83[8]. pp. 2079-2081, 2000 https://doi.org/10.1111/j.1151-2916.2000.tb01515.x
  5. Xiao Feng Zhang, Qing Yang and Lutgard C. De Jonghe "Microstucture Development in Hot-Pressed Silicon Carbide: Effects of Aluminum, Boron, and Carbon Additives", Acta Materialia., 51[13], pp. 3849-3860, 2003 https://doi.org/10.1016/S1359-6454(03)00209-X
  6. S. S. Shinozaki S, Robert M. Williams, B. N. Juterbock ,William T. Donlon, Jon Hangas and C. R. Peters, "Microstructural Developments in Pressureless -Sintered $\beta$-SiC Materials with Al, B, and C Additions", J. Am. Ceram. Soc., Bull, 64[10], pp. 1389-1393, 1985
  7. Peterson, I. M. and Tien, T. Y., "Effect of the Grain Boundary Thermal Expansion Coefficient on the Fracture Toughness of Silicon Nitride", J. Am. Ceram. Soc., 78[9], pp. 2345-2352, 1995 https://doi.org/10.1111/j.1151-2916.1995.tb08667.x
  8. Shiro Torizuka, Kaoru Sato, Hiroaki Nishio and Terio Kishi, "Effects of SiC on Interfacial Reaction and Sintering Mechanism of TiB2" J. Am. Ceram. Soc., 78[6], pp. 1606-1610, 1995 https://doi.org/10.1111/j.1151-2916.1995.tb08858.x
  9. Y. D. Shin, J. Y. Ju, K. S. Choi, S. S. Oh, Y. W. Yoon, "Properties of SiC-TiB2 Electroconductive Ceramic Composites by Pressureless Annealing" Trans. KIEE, Vol. 52C, No. 2, pp. 80-84, 2003
  10. Jow-Lay Huang and Jyh-Ming Jih, "Investigation of SiC-AlN: PartII, Mechanical Properties" J. Am. Ceram. Soc., 79[5], pp. 1262-1264, 1996 https://doi.org/10.1111/j.1151-2916.1996.tb08582.x
  11. Jingxian Zhang, Rong Huang, Hui Gu, Dongliang Jiang, Qingling Lin and Zhengren Huang, "High Toughness in Laminated SiC Ceramics from Aqueous tape Casting" Scripta Materialia., 52[5], pp. 381-385, 2005 https://doi.org/10.1016/j.scriptamat.2004.10.026
  12. Y. K. Park, J. T. Kim and Y. H. Baik, "Mechanical Properties and Electrical Discharge Machinability of $\beta$-Sialon-TiB2 Composites" J. Mater. Sci. Korea, 5[1], pp. 19-24, 1999
  13. A. Tampieri and A. Bellosi, "Oxidation of Monolithic TiB2 and of Al2O3-TiB2 Composite" Journal of Materials Science, 28, pp. 649-653, 1993 https://doi.org/10.1007/BF01151240
  14. S. G. Lee and Y. W. Kim, "Relationship between Microstructure and Fracture Toughness of Toughened Silicon Carbide Ceramics", J. Am. Ceram. Soc., 84[6], pp. 1347-1353, 2001
  15. J. Y. Kim, Y. W. Kim, Mitomo, M., Zhan, G. D. and Lee, J. G., "Microstructure and Mechanical Properties of $\alpha$-Silicon Carbide Sintered with Yttrium-Aluminum Garnet and Silica", J. Am. Ceram. Soc., 82[2], pp.441-444, 1999 https://doi.org/10.1111/j.1551-2916.1999.tb20082.x
  16. S. K. Lee, Dy. K. Kim and Ch. H. Kim "Flaw-Tolerance and R-Curve Behavior of Liquid- Phase-Sintered Silicon Carbides with Different Microstructures", J. Am. Ceram. Soc., 78[1], pp. 65-70, 1995 https://doi.org/10.1111/j.1151-2916.1995.tb08361.x
  17. Y. H. Koh, S. Y. Lee and H. E. Kim, "Oxidation Behavior of Titanium Boride at Elevated Temperatures" J. Am. Ceram. Soc., 84[1], pp. 239-241, 2001 https://doi.org/10.1111/j.1151-2916.2001.tb00641.x
  18. Nitin P. Padture and Brian R. Lawn, "Toughness Properties of a silicon Carbide with an in Situ Induced Heterogeneous Grain Structure" J. Am. Ceram. Soc., 77[10], pp. 2518-2522, 1994 https://doi.org/10.1111/j.1151-2916.1994.tb04637.x
  19. Y. W. Kim, W. J. Kim and D. H. Cho, "Effect of Additive Amount on Microstructure and Mechanical Properties of Self-reinforced Silicon Carbide", J. Mater. Sci. Lett., 16. pp.1384-1386, 1997 https://doi.org/10.1023/A:1018544923812
  20. Frederic Monteverde, Stefano Guicciardi and Alida Bellosi, "Advances in Microstucture and Mechanical Properties of Zirconium Diboride based Ceramics", Materials Science and Engineering A, 346. pp. 310-319, 2003 https://doi.org/10.1016/S0921-5093(02)00520-8
  21. Robert M. Williams, B. N. Juterbock, S. S. Shinozaki, C. R. Peters and Thomas J. Whalen, "Effects of Sintering Temperatures on the Physical and Crystallographic Properties of $\beta$-SiC", J. Am. Ceram. Soc., Bull, 64[10], pp. 1385-1389, 1985
  22. Joe J. Cao, Warren J. Moberlychan, Lutgard C. Dejonghe, Christopher J. Gilbert and Robert O. Ritchie "In Situ Toughened Silicon Carbide Al-B-C Additions", J. Am. Ceram. Soc., 79[2], pp. 461-469, 1996 https://doi.org/10.1111/j.1151-2916.1996.tb08145.x
  23. Mylene Brach, Diletta Sciti, Andrea Balbo and Alida Bellosi, "Short-Term Oxidation of a Ternary Composite in the System AlN-SiC-ZrB2", Journal of the European Ceramic Society, 25. pp. 1771-1780, 2005 https://doi.org/10.1016/j.jeurceramsoc.2004.12.007
  24. Guo-Dong Zhan, Rong-Jun Xie and Mamoru Mitomo, "Effect of $\beta$-to-$\alpha$ Phase Transformation on the Microstructural Development and Mechanical Properties of Fine-Grained Silicon Carbide Ceramics", J. Am. Ceram. Soc., 84[5]. pp. 945-950, 2001 https://doi.org/10.1111/j.1151-2916.2001.tb00773.x
  25. Jaroslav L. Caslvsky and Dennis J. Viechnicki, "Melting Behaviour and Metastability of Yttrium Aluminium Garnet(YAG) and YAlO3 Determined by Optical Differential Thermal Analysis", J. Mater Sci,, 15, pp. 1709-1718, 1980 https://doi.org/10.1007/BF00550589
  26. Carl H. Mcmurtry, Wolfgang D. G. Boecker. Srinivasa G. Seshadri, Joseph S. Zanghi and John E. Garnier "Microstructure and Material Properties of SiC-TiB2 Particulate Composites", Am. Ceram. Soc. Bull., 66[2], pp. 325-329, 1987
  27. J. H. She and K. Ueno., "Densification Behavior and Mechanical Properties of Pressureless-Sintered Silicon Carbide Ceramics with Alumina and Yttria Additions", Materials Chemistry and Physics., 59, pp. 139-142, 1999 https://doi.org/10.1016/S0254-0584(99)00039-5
  28. Y. W. Kim, M. Mitomo and H. Hirotsuru, "Microstructure Development of Silicon Carbide Containing Large Seed Grains", J. Am. Ceram. Soc., 80[1], pp. 99-105, 1997 https://doi.org/10.1111/j.1151-2916.1997.tb02796.x
  29. Ming-Jen Pan, Patrica A. Hoffman, David J. Green and John R. Hellmann, "Elastic Properties and Microcracking Behavior of Particulate Titanium Diboride-Silicon Carbide Composites" J. Am. Ceram. Soc., 80[3], pp. 692-698, 1997 https://doi.org/10.1111/j.1151-2916.1997.tb02886.x
  30. Alina Kulpa and Tom Troczynski, "Oxidation of TiB2 Powders below 900$^{\circ}C$" J. Am. Ceram. Soc., 79(2), pp. 518-520, 1996 https://doi.org/10.1111/j.1151-2916.1996.tb08157.x
  31. Mark A. Janney, "Mechanical Properties and Oxidation of Behavior of a Hot-Pressed SiC-15-vol% -TiB2 Composite" J. Am. Ceram. Soc., Bull, 66[2], pp. 322-324, 1987
  32. M. Nader, F. Aldinger and M. J. Hoffmann, "Influence of the $\alpha$/$\beta$ Phase Transformation on Microstructural Development and Mechanical Properties of Liquid Phase Sintered Silicon Carbide", J. Mat. Sci., 34. pp. 1197-1204, 1999 https://doi.org/10.1023/A:1004552704872
  33. Lee, J. K., Tanaka, H. and Kim, H., "Movement of Liquid Phase and the Formation of Surface Reaction Layer on the Sintering of $\beta$-SiC with an Additive of Yttrium Aluminium Garnet", J. Mat. Sci., 15. pp. 409-411, 1996 https://doi.org/10.1007/BF02396789
  34. Oyelayo O. ajayi, Ali Erdemir, Richard H. Lee and Fred A. Nichols, "Sliding Wear of Silicon Carbide-Titanium Boride Ceramic-Matrix Composite" J. Am. Ceram. Soc., 76[2], pp. 511-517, 1993 https://doi.org/10.1111/j.1151-2916.1993.tb03815.x
  35. L. J. Gibson and M. F. Ashby, "The Mechanics of Three-Dimensional Cellular Materials" Proc. R. Soc. London. A382, pp. 43-59, 1982
  36. D. Sciti, S. Guicciardi and A. Bellosi, "Effect of Annealing Treatments on Microstructure and Mechanical Properties of Liquid-Phase-Sintered Silicon Carbide", Journal of the European Ceramic Society, 21. pp. 621-632, 2001 https://doi.org/10.1016/S0955-2219(00)00254-5
  37. J. Ihle, M. Herrmann and J. Alder, "Phase Formation in Porous Liquid Phase Sintered Silicon Carbide: Part III: Interaction between Al2O3-Y2O3 and SiC", Journal of the European Ceramic Society, 25, pp. 1005-1013, 2005 https://doi.org/10.1016/j.jeurceramsoc.2004.04.017
  38. Rong Huang, Hui Gu, Jingxian Zhang and Dongliang Jiang, "Effect of Y2O3-Al2O3 Ratio on Inter-Granualar hases and Films in Tape-Casting $\alpha$-SiC with High Toughness", Acta Materialia., 53[8], pp. 2521-2529, 2005
  39. J. B. Hurst and S. Dutta, " Simple Processing Method for High-strength Silicon Carbide", J. Am. Ceram. Soc., 70[11]. pp. C303-C308, 1987
  40. D. Sciti and A. Bellosi, "Effects of Additives on Densification, Microstructure and Properties of Liquid-Phase Sintered Silicon Carbide", J. Mat. Sci. Lett., 35, pp. 3849-3855, 2000 https://doi.org/10.1023/A:1004881430804
  41. Diletta. Sciti, Cesare. Melandri and Alida Bellosi, "Properties of ZrB2-Reinforced Tenary Composites", Adanced Engineering Materials, 6[9], pp. 775-781, 2004 https://doi.org/10.1002/adem.200400039
  42. S. H. Yim, Y. D. Shin and J. T. Song, "The Properties of $\beta$-SiC-TiB2 Electroconductive Ceramic Composites Densified by Liquid-Phase Sintering", Trans. KIEE, Vol. 49[9], pp. 510-515, 2000
  43. Cathleen Mroz, "Titanium Diboride" J. Am. Ceram. Soc., Bull., 74[6], pp. 158-159, 1995
  44. Y. W. Kim, M. Mitomo, H. Emoto, J. G. Lee, "Effect of Initial $\alpha$-Phase Content on Microstructure and Mechanical Properties of Sintered Silicon Carbidea", J. Am. Ceram. Soc., 81[12], pp. 3136-3140, 1998 https://doi.org/10.1111/j.1151-2916.1998.tb02748.x
  45. Hui Gu, Takayuki Nagano, Guo-Dong Zhan, Mamoru Mitomo and Fumihiro Wakai, "Dynamic Evolution of Grain Boundary Films in Liquid-Phase-Sintered Ultrafine Silicon Carbide Material", J. Am. Ceram. Soc., 86[10], pp. 1753-1760, 2003 https://doi.org/10.1111/j.1151-2916.2003.tb03550.x
  46. Weimin Wang, Zhengyi Fu, Hao Wang and Runzhang Yuan, "Influence of Hot Pressing Sintering Temperature and Time on Microstucture and mechanical Properties of TiB2 Ceramics", Journal of the European Ceramic Society, 22. pp. 1045-1049, 2002 https://doi.org/10.1016/S0955-2219(01)00424-1
  47. J. Y. Kim,, Y. W. Kim,, J. G. Lee, and K. S. Cho, "Effect of Annealing on Mechanical Properties of Self-reinforced alpha-Silicon Carbide", J. Mat. Sci., 34. pp. 2325-2330, 1999 https://doi.org/10.1023/A:1004585910170
  48. Y. D. Shin, S. H. Yim, and J. T. Song, "Properties of $\beta$-SiC-TiB2 Electroconductive Ceramic CompositesDensified by Liquid-Phase Sintering(II)", Trans. KIEE, Vol. 50C[6], pp. 263-270, 2001
  49. R. W. Carpenter , W. Braue and Raymond A. Cutler, "Transmission Electron Microscopy of Liquid Phase Densified SiC" J. Mater Res., 6[9] pp. 1937-1944, 1991 https://doi.org/10.1557/JMR.1991.1937
  50. Xiao Feng Zhang, Mark E. Sixta and Lutgard C. De Jonghe "Grain Boundary Evolution in Hot-Pressed ABC-SiC", J. Am. Ceram. Soc., 83[11]. pp. 2813-2820, 2000 https://doi.org/10.1111/j.1151-2916.2000.tb01637.x
  51. Mark M. Opeka, Inna G. Talmy, Eric J. Wuchina, James A. Zaykoski and Samuel J. Causey, "Mechanical Thermal, and Oxidation Properties of Refractory Hafnium and Zirconium Compounds", Journal of the European Ceramic Society, 19. pp. 2405-2414, 1999 https://doi.org/10.1016/S0955-2219(99)00129-6