DOI QR코드

DOI QR Code

GROBNER-SHIRSHOV BASES FOR IRREDUCIBLE sp4-MODULES

  • Lee, Dong-Il
  • Published : 2008.05.31

Abstract

We give an explicit construction of Grobner-Shirshov pairs and monomial bases for finite-dimensional irreducible representations of the simple Lie algebra $sp_4$. We also identify the monomial basis consisting of the reduced monomials with a set of semistandard tableaux of a given shape, on which we give a colored oriented graph structure.

Keywords

Grobner-Shirshov pair;monomial basis;representation;simple Lie algebra;Grobner-Shirshov graph

References

  1. L. A. Bokut, S.-J. Kang, K.-H. Lee, and P. Malcolmson, Grobner-Shirshov bases for Lie superalgebras and their universal enveloping algebras, J. Algebra 217 (1999), no. 2, 461-495 https://doi.org/10.1006/jabr.1998.7810
  2. L. A. Bokut and A. A. Klein, Serre relations and Grobner-Shirshov bases for simple Lie algebras I,II, Intenat. J. Algebra Comput. 6 (1996), no. 4, 389-400, 401-412 https://doi.org/10.1142/S0218196796000222
  3. L. A. Bokut, Grobner-Shirshov bases for exceptional Lie algebras I, J. Pure Appl. Algebra 133 (1998), no. 1-2, 51-57 https://doi.org/10.1016/S0022-4049(97)00180-1
  4. L. A. Bokut, Grobner-Shirshov bases for exceptional Lie algebras E6;E7;E8, in 'Algebra and combinatorics (Hong Kong, 1997)', 37-46, Springer-Verlag, Singapore, 1999
  5. B. Buchberger, An algorithm for finding a basis for the residue class ring of a zerodimensional ideal, Ph.D. thesis, University of Innsbruck, 1965
  6. J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, Vol. 9. Springer-Verlag, New York-Berlin, 1972
  7. V. G. Kac, Infinite-dimensional Lie Algebras, Third edition. Cambridge University Press, Cambridge, 1990
  8. S.-J. Kang, D.-I. Lee, K.-H. Lee, and H. Park, Linear algebraic approach to Grobner-Shirshov basis theory, J. Algebra 313 (2007), no. 2, 988-1004 https://doi.org/10.1016/j.jalgebra.2007.02.001
  9. S.-J. Kang, I.-S. Lee, K.-H. Lee, and H. Oh, Hecke algebras, Specht modules and Grobner-Shirshov bases, J. Algebra 252 (2002), no. 2, 258-292 https://doi.org/10.1016/S0021-8693(02)00071-6
  10. S.-J. Kang, Representations of Ariki-Koike algebras and Grobner-Shirshov bases, Proc. London Math. Soc. (3) 89 (2004), no. 1, 54-70 https://doi.org/10.1112/S0024611503014606
  11. S.-J. Kang and K.-H. Lee, Grobner-Shirshov bases for representation theory, J. Korean Math. Soc. 37 (2000), no. 1, 55-72
  12. S.-J. Kang and K.-H. Lee, Grobner-Shirshov bases for irreducible $sl_n+1$-modules, J. Algebra 232 (2000), no. 1, 1-20 https://doi.org/10.1006/jabr.2000.8381
  13. P. Lalonde and A. Ram, Standard Lyndon bases of Lie algebras and enveloping algebras, Trans. Amer. Math. Soc. 347 (1995), no. 5, 1821-1830 https://doi.org/10.2307/2154977
  14. A. I. Shirshov, Some algorithm problems for Lie algebras, Sibirsk. Mat. Z. 3 (1962), 292-296
  15. J. Hong and S.-J. Kang, Introduction to Quantum Groups and Crystal Bases, Graduate Studies in Mathematics, 42. American Mathematical Society, Providence, RI, 2002

Cited by

  1. Cyclotomic Hecke Algebras of G(r, p, n) vol.13, pp.6, 2010, https://doi.org/10.1007/s10468-009-9170-5
  2. Gröbner-Shirshov Bases for Exceptional Lie Superalgebras vol.22, pp.01, 2015, https://doi.org/10.1142/S1005386715000024
  3. MONOMIAL BASES FOR SOME IRREDUCIBLE 𝔤2-MODULES vol.09, pp.05, 2010, https://doi.org/10.1142/S0219498810004142
  4. Standard monomials for the Weyl group F4 vol.15, pp.08, 2016, https://doi.org/10.1142/S0219498816501462