• Drungilas, Paulius
  • Published : 2008.05.31


The main result of this paper shows that every reciprocal Littlewood polynomial, one with {-1, 1} coefficients, of odd degree at least 7 has at least five unimodular roots, and every reciprocal Little-wood polynomial of even degree at least 14 has at least four unimodular roots, thus improving the result of Mukunda. We also give a sketch of alternative proof of the well-known theorem characterizing Pisot numbers whose minimal polynomials are in $$A_N=\{[{X^d+ \sum\limits^{d-1}_{k=0} a_k\;X^k{\in} \mathbb{Z}[X]\;:\;a_k={\pm}N,\;0{\leqslant}k{\leqslant}d-1}\}$$ for positive integer $N{\geqslant}2$.


Pisot numbers;Littlewood polynomials;unimodular roots;reciprocal polynomiab


  1. P. Borwein, T. Erdelyi, R. Ferguson, and R. Lockhart, On the zeros of cosine polynomials: solution of an old problem of Littlewood (submitted)
  2. P. Borwein, T. Erdelyi, and F. Littmann, Zeros of polynomials with finitely many different coefficients, Trans. Amer. Math. Soc. (to appear)
  3. P. Borwein, K. G. Hare, and M. J. Mossinghoff, The Mahler measure of polynomials with odd coefficients, Bull. Lond. Math. Soc. 36 (2004), no. 3, 332-338
  4. D. W. Boyd, Pisot and Salem numbers in intervals of the real line, Math. Comp. 32 (1978), no. 144, 1244-1260
  5. T. Erdelyi, On the zeros of polynomials with Littlewood-type coefficient constraints, Michigan Math. J. 49 (2001), no. 1, 97-111
  6. J. Konvalina and V. Matache, Palindrome-polynomials with roots on the unit circle, C. R. Math. Acad. Sci. Soc. R. Can. 26 (2004), no. 2, 39-44
  7. P. Lakatos, On a number theoretical application of Coxeter transformations, Riv. Mat. Univ. Parma (6) 3 (2000), 293-301
  8. P. Lakatos, On polynomials having zeros on the unit circle, C. R. Math. Acad. Sci. Soc. R. Can. 24 (2002), no. 2, 91-96
  9. P. Lakatos, On zeros of reciprocal polynomials, Publ. Math. Debrecen 61 (2002), no. 3-4, 645-661
  10. P. Lakatos, Self-inversive polynomials whose zeros are on the unit circle, Publ. Math. Debrecen 65 (2004), no. 3-4, 409-420
  11. M. Marden, Geometry of Polynomials, Second edition. Mathematical Surveys, No. 3 American Mathematical Society, Providence, R.I. 1966
  12. I. D. Mercer, Unimodular roots of special Littlewood polynomials, Canad. Math. Bull. 49 (2006), no. 3, 438-447
  13. K. Mukunda, Littlewood Pisot numbers, J. Number Theory 117 (2006), no. 1, 106-121
  14. R. Salem, Algebraic Numbers and Fourier Analysis, D. C. Heath and Co., Boston, Mass. 1963
  15. A. Schinzel, Self-inversive polynomials with all zeros on the unit circle, Ramanujan J. 9 (2005), no. 1-2, 19-23
  16. C. L. Siegel, Algebraic integers whose conjugates lie in the unit circle, Duke Math. J. 11 (1944), 597-602
  17. C. J. Smyth, On the product of the conjugates outside the unit circle of an algebraic integer, Bull. Lond. Math. Soc. 3 (1971), 169-175
  18. J. F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall Series in Automatic Computation Prentice-Hall, Inc., Englewood Cliffs, N.J. 1964
  19. P. Lakatos and L. Losonczy, On zeros of reciprocal polynomials of odd degree, J. Inequal. Pure Appl. Math. 4 (2003), no. 3, Article 60, 8 pp

Cited by

  1. A family of self-inversive polynomials with concyclic zeros vol.401, pp.2, 2013,
  2. On Littlewood Polynomials with Prescribed Number of Zeros Inside the Unit Disk vol.67, pp.03, 2015,