Choi, Seul-Hee

  • Published : 2008.04.30


For $\mathbb{F}[e^{{\pm}x}]_{\{{\partial}\}}$, all the derivations of the evaluation algebra $\mathbb{F}[e^{{\pm}x}]_{\{{\partial}\}}$ is found in the paper (see [16]). For $M=\{{\partial}_1,\;{\partial}_1^2\},\;Der_{non}(\mathbb{F}[e^{{\pm}x}]_M))$ of the evaluation algebra $\mathbb{F}[e^{{\pm}x},\;e^{{\pm}y}]_M$ is found in the paper (see [2]). For $M=({\partial}_1^2,\;{\partial}_2^2)$, we find $Der_{non}(\mathbb{F}[e^{{\pm}x},\;e^{{\pm}y}]_M))$ of the evaluation algebra $\mathbb{F}[e^{{\pm}x},\;e^{{\pm}y}]_M$ in this paper.


simple;Witt algebra;graded;radical homogeneous equivalent component;order;derivation invariant


  1. M. H. Ahmadi, K.-B. Nam, and J. Pakianathan, Lie admissible non-associative algebras, Algebra Colloquium 12 (2005), no. 1, 113-120
  2. S. H. Choi, Notes on a Non-Associative Algebras with Exponential Functions II, Bull. Korean Math. Soc. 44 (2007), no. 2, 241-246
  3. S. H. Choi and K.-B. Nam, The derivation of a restricted Weyl type non-associative algebra, Hadronic Journal 28 (2005), no. 3, 287-295
  4. S. H. Choi and K.-B. Nam, Derivation of symmetric non-associative algebra I, Algebras, Groups and Geometries 22 (2005), no. 3, 341-352
  5. S. H. Choi and K.-B. Nam, Derivations of a restricted Weyl Type Algebra I, Appear, Rocky Mountain Journal of Mathematics, 2007
  6. T. Ikeda, N. Kawamoto, and K.-B. Nam, A class of simple subalgebras of generalized W algebras, Proceedings of the International Conference in 1998 at Pusan (Eds. A. C. Kim), Walter de Gruyter Gmbh Co. KG, 2000, 189-202
  7. V. G. Kac, Description of Filtered Lie Algebra with which Graded Lie algebras of Cartan type are Associated, Izv. Akad. Nauk SSSR, Ser. Mat. Tom, 38 (1974), 832-834
  8. N. Kawamoto, A. Mitsukawa, K.-B. Nam, and M.-O. Wang, The automorphisms of generalized Witt type Lie algebras, Journal of Lie Theory 13 (2003), no. 2, 571-576
  9. I. Kaplansky, The Virasoro algebra, Comm. Math. Phys. 86 (1982), no. 1, 49-54
  10. K.-B. Nam, On some non-associative algebras using additive groups, Southeast Asian Bulletin of Mathematics 27 (2003), 493-500
  11. K.-B. Nam, Y. Kim, and M.-O. Wang, Weyl-type non-associative algebras I, IMCC Proceedings, 2004, SAS Publishers, 147-155
  12. K.-B. Nam and S. H. Choi, On the derivations of non-associative Weyl-type algebras, Southeast Asian Bull. Math. 31 (2007), 341-348
  13. A. N. Rudakov, Groups of automorphisms of infinite-dimensional simple Lie algebras, Math. USSR-Izvestija 3 (1969), 707-722
  14. R. D. Schafer, Introduction to nonassociative algebras, Dover, 128-138, 1995
  15. M.-O. Wang, J.-G. Hwang, and K.-S. Lee, Some results on non-associative algebras, Bull. Korean Math. Soc. 44 (2007), no. 1, 95-102
  16. K.-B. Nam and M.-O.Wang, Notes on some non-associative algebras, Journal of Applied Algebra and Discrete Structured 1 (2003), no. 3, 159-164