Effects of Crystal Structure on Microwave Dielectric Properties of Ceramics

  • Kim, Eung-Soo (Department of Materials Engineering, Kyonggi University) ;
  • Jeon, Chang-Jun (Department of Materials Engineering, Kyonggi University) ;
  • Kim, Sung-Joo (Department of Materials Engineering, Kyonggi University) ;
  • Kim, Su-Jung (Department of Materials Engineering, Kyonggi University)
  • Published : 2008.05.31


Microwave dielectric properties of $MgTiO_3,\;MgWO_4,\;MgNb_2O_6$, and $MgTa_2O_6$ were investigated based on the structural characteristics. The dielectric constant (K) was dependent on the dielectric polarizabilities of the specimens, and the deviation of the observed dielectric polarizabilities (${\alpha}_{obs.}$) from the theoretical dielectric polarizabilities (${\alpha}_{theo.}$) were decreased with increasing of Mg-site bond valence. Quality factors (Qf) were affected by the sharing type of $MgO_6$ and $BO_6$ octahedra. Temperature coefficient of resonant frequency (TCF) was decreased with increasing of average octahedral distortion.


  1. E. S. Kim, S. H. Kim, and K. H. Yoon, 'Dependence of Thermal Stability on Octahedral Distortion of (1-x) ($Ca_{0.3}Li_{0.119}Sm_{0.427}$)$TiO_3$-$xLnAlO_3$ (Ln=Nd, Sm) Ceramics,' J. Ceram. Soc. Jpn., 112 1645-49 (2004)
  2. J. H. Shon, Y. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoon, and H. J. Kim, 'Microwave Dielectric Characteristics of Ilmenite-Type Titanates with High Q Values,' Jpn. J. Appl. Phys., 33 5466-70 (1994)
  3. E. S. Kim and K. H. Yoon, 'Microwave Dielectric Properties of (1-x)$CaTiO_3$-$xLi_{1/2}Sm_{1/2}TiO_3$ Ceramics,' J. Euro. Ceram. Soc., 23 2397-401 (2003)
  4. R. D. Shannon, 'Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,' Acta Cryst., A32 751-67 (1976)
  5. F. Izumi and T. Ikeda, 'A Rietveld-Analysis Programm RIETAN-98 and its Applications to Zeolites,' Mater. Sci. Forum, 321 198-203 (2000)
  6. B. W. Hakki and P. D. Coleman, 'A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range,' IRE Trans. Microwave Theory Tech., 8 402-10 (1960)
  7. T. Nishikawa, K. Wakino, H. Tamura, H. Tanaka, and Y. Ishikawa, 'Precise Measurement Method for Temperature Coefficient of Microwave Dielectric Resonator Material,'IEEE MTT-S Int. Microwave Symp. Dig., 277-80 (1987)
  8. H. S. Park, K. H. Yoon, and E. S. Kim, 'Relationship between the Bond Valence and the Temperature Coefficient of the Resonant Frequency in the Complex Perovskite $Pb_{1-x}Ca_x$$Fe_{0.5}$($Nb_{1-y}Ta_y)_{0.5}O_3$,' J. Am. Ceram. Soc., 84 99-103 (2001)
  9. N. B. Brese and M. O'Keefe, 'Bond-Valence Parameters for Solids,' Acta Cryst., B47 192-97 (1991)
  10. I. D. Brown and D. Altermatt, 'Bond-Valence Parameters Obtained from a Systematic Analysis of the Inorganic Crystal Structure Database,' Acta Cryst., B41 244-47 (1985)
  11. R. D. Shannon, 'Dielectirc Polarizabilities of Ions in Oxides and Fluorides,' J. Appl. Phys., 73 348-66 (1993)
  12. D. M. Iddles, A. J. Bell, and A. J. Moulson, 'Relationships between Dopants, Microstructure and the Microwave Dielectric Properties of $ZrO_2-TiO_2-SnO_2$ Ceramics.' J. Mater. Sci., 27 6303-07 (1992)
  13. S. G. Mhaisalkar, D. W. Readey, S. A. Akbar, P. K. Dutta, M. J. Sumnar, and R. Rokhlin, 'Infrared Reflectance Spectra of Doped $BaTi_4O_9$.' J. Solid State Chem., 95 275-82 (1991)

Cited by

  1. Band Structure Engineering: Insights from Defects, Band Gap, and Electron Mobility, from Study of Magnesium Tantalate vol.120, pp.13, 2016,
  2. ceramics vol.100, pp.11, 2017,
  3. Theoretical Study of Magnesium and Zinc Tantalates and Niobates as Prospective Catalyst Supports for Water Electrolysis vol.159, pp.10, 2012,