DOI QR코드

DOI QR Code

Electrical Properties of SrRuO3 Thin Films with Varying c-axis Lattice Constant

  • Chang, Young-J. ;
  • Kim, Jin-I ;
  • Jung, C.U.
  • Published : 2008.06.30

Abstract

We studied the effect of the variation of the lattice constant on the electrical properties of $SrRuO_3$ thin films. In order to obtain films with different volumes, we varied the substrate temperature and oxygen pressure during the growth of the films on $SrTiO_3$ (001) substrates. The films were grown using a pulsed laser deposition method. The X-ray diffraction patterns of the grown films at low temperature and low oxygen pressure indicated the elongation of the c-axis lattice constant compared to that of the films grown at a higher temperature and higher oxygen pressure. The in-plane strain states are maintained for all of the films, implying the expansion of the unit-cell volume by the oxygen vacancies. The variation of the electrical resistance reflects the temperature dependence of the resistivity of the metal, with a ferromagnetic transition temperature inferred form the cusp of the curve being observed in the range from 110 K to 150 K. As the c-axis lattice constant decreases, the transition temperature linearly increases.

Keywords

SrRuO3;thin film;resistivity;lattice constant;ferromagnetic transition

References

  1. Y. Z. Yoo, O. Chmaissem, S. Kolesnik, B. Dabrowski, M. Maxwell, C. W. Kimball, L. McAnelly, M. Haji-Sheikh, and A. P. Genis, J. Appl. Phys. 97, 103525 (2005) https://doi.org/10.1063/1.1909284
  2. Y. S. Kim, D. J. Kim, T. H. Kim, T. W. Noh, J. S. Choi, B. H. Park, and J.-G. Yoon, Appl. Phys. Lett. 91, 042908 (2007) https://doi.org/10.1063/1.2764437
  3. I. I. Mazin and D. J. Singh, Phys. Rev. B 56, 2556 (1997) https://doi.org/10.1103/PhysRevB.56.2556
  4. O. Auciello, C. M. Foster, and R. Ramesh, Annu. Rev. Mater. Sci. 28, 501 (1998) https://doi.org/10.1146/annurev.matsci.28.1.501
  5. D. C. Worledge and T. H. Geballe, Phys. Rev. Lett. 85, 5182 (2000) https://doi.org/10.1103/PhysRevLett.85.5182
  6. G. Cao, S. McCall, M. Shepard, J. E. Crow, and R. P. Guertin, Phys. Rev. B 56, 321 (1997) https://doi.org/10.1103/PhysRevB.56.321
  7. Hyo-Jin Kim, Hyoun-Soo Kim, Do-Jin Kim, Young-Eon Ihm, Woong-Kil Choo, and Chan-Yong Hwang, J. Magnetics 12(4), 144 (2007) https://doi.org/10.4283/JMAG.2007.12.4.144
  8. Jae-wan Chang, Hyun M. Jang, and Sang-Koog Kim, J. Magnetics 11(3), 108 (2006) https://doi.org/10.4283/JMAG.2006.11.3.108
  9. K. W. Kim, J. S. Lee, T. W. Noh, S. R. Lee, and K. Char, Phys. Rev. B 71, 125104 (2005) https://doi.org/10.1103/PhysRevB.71.125104
  10. K. S. Takahashi, A. Sawa, Y. Ishii, H. Akoh, M. Kawasaki, and Y. Tokura, Phys. Rev. B 67, 94413 (2003) https://doi.org/10.1103/PhysRevB.67.094413
  11. B. Dabrowski, O. Chmaissem, P. W. Klamut, S. Kolesnik, M. Maxwell, J. Mais, Y. Ito, B. D. Armstron, J. D. Jorgensen, and S. Short, Phys. Rev. B 70, 014423 (2004) https://doi.org/10.1103/PhysRevB.70.014423
  12. Dong-Hyeok Choi, In-Bo Shim, Tae-Joon Kouh, and Chul-Sung Kim, J. Magnetics 12(4), 141 (2007) https://doi.org/10.4283/JMAG.2007.12.4.141
  13. Y. S. Kim, D. H. Kim, J. D. Kim, Y. J. Chang, T. W. Noh, J. H. Hong, K. Char, Y. D. Park, S. D. Bu, J.-G. Yoon, and J. S. Jung, Appl. Phys. Lett. 86, 102907 (2005) https://doi.org/10.1063/1.1880443

Cited by

  1. Substrate vol.82, pp.1, 2013, https://doi.org/10.7566/JPSJ.82.013706
  2. Phase transformation of the brownmillerite SrCoO2.5 thin film through alkaline water electrolysis vol.64, pp.12, 2014, https://doi.org/10.3938/jkps.64.1845
  3. heterostructures vol.111, pp.15, 2017, https://doi.org/10.1063/1.5000866
  4. thin films vol.10, pp.9, 2018, https://doi.org/10.1039/C7NR09627E