Enhancement of Magneto-optical Kerr Effect Signal from the Nanostructure by Employing Anti-reflection Coated Substrate

  • Published : 2008.06.30


In this study, a MOKE (Magneto-optical Kerr effect) measurement method for magnetic nanostructures is proposed. Theoretically, the MOKE signal enhancement can be predicted and confirmed when an anti-reflection coated substrate is used. Since MOKE is a ratio of reflectivity and the difference between the reflectivities for two magnetic states, when the reflectivity of the substrate part is reduced by employing an anti-reflection coated substrate, MOKE signal enhancement can be achieved. The enhancement is confirmed by simple numerical MOKE calculations. When the reflectivity of an anti-reflection coated substrate is 0.7%, the calculated MOKE signal is about 79% of its bulk values for the 100-nm wide Fe nanowire with a 1500-nm radius laser beam. It was found that, for various numerical calculations, a larger MOKE signal is obtained relative to a smaller substrate reflectivity.


  1. P. R. Cantwell, U. J. Gibson, D. A. Allwood, and H. A. M. Macleod, J. Appl. Phys. 100, 093910 (2006)
  2. D. A. Allwood, Gang Xiong, M. D. Cooke, and R. P. Cowburn, Appl. Phys. 36, 2175 (2003)
  3. L. F. Holiday and U. J. Gibson, OPTICS EXPRESS 14, 13007 (2006)
  4. C.-Y. You and S.-C. Shin, J. Mag. Mag. Mater. 198, 573 (1999)
  5. See, Tech. Digests of Int. Symp. Optical Memory and Optical Data Storag
  6. Naser Qureshi, Suqin Wang, Mark A. Lowther, Aaron R. Hawkins, Sunghoon Kwon, Alexander Liddle, Jeffrey Bokor, and Holger Schmidt, Nano Lett. 5, 1413 (2005)
  7. C.-Y. You and S.-C. Shin, J. Appl. Phys. 84, 541 (1998)
  8. Y. He, T. Kojima, T. Uno, and S. Adachi, IEICE Tran. Elec. E81-C, 1881 (1998)
  9. J. Zak, E. R. Moog, C. Liu, and S. D. Bader, Journal of Magnetism and Magnetic Materials 89, 107 (1990)
  10. Ji-sang Hong, J. Magnetics 11(1), 20 (2006)
  11. Luc Thomas, M. Hyayashi, X. Jiang, R. Moriya, C. Rettner, and S. Parkin, Science 315, 1553 (2007)
  12. S. S. P. Parkin, US. Patent No. 6834005 (2004)
  13. G. S. D. Beach, C. Nistor, C. Knutson, M. Tsoi, and J. L. Erskine, Nat. Mat. 4, 741 (2005)
  14. G. Meier, M. Bolte, R. Eiselt, B. Kruger, D.-H. Kim, and P. Fischer, Phys. Rev. Lett. 98, 187202 (2007)
  15. D. A. Allwood et al., J. Appl. Phys. 95, 8264 (2004)
  16. Joonyeon Chang, A. A. Fraerman, Suk Hee Han, Hi Jung Kim, S. A. Gusev, and V. L. Mironov, J. Magnetics 10(2), 58 (2005)
  17. S.-B. Choe, Y. Acremann, A. Scholl, A. Bauer, A. Doran, J. Stohr, and H. A. Padmore, Science 304, 420 (2004)
  18. J.-Y. Bigot, L. Guidoni, E. Beaurepaire, and P. N. Saeta, Phys. Rev. Lett. 93, 077401 (2004)
  19. D. A. Allwood, G. Xiong, M. D. Cooke, C. C. Faulkner, D. Atkinson, N. Vernier, and R. P. Cowburn, Science 296, 2003 (2002)
  20. J. Tominaga, T. Nakano, and N. Atoda, Appl. Phys. Lett. 73, 2078 (1998)
  21. Ursula. J. Gibson, Lindsay F. Holiday, Dan A. Allwood, Swaraj Basu, and Paul W. Fry, IEEE Trans. Magn. 43, 2740 (2007)
  22. J. Liu, B. Xu, and T. C. Chong, Jpn. J. Appl. Phys. 39, 687 (2000)

Cited by

  1. Spin-Ordering Leading Magnetic Transition in Sulphur System $\hbox{ACr}_{2}\hbox{S}_{4}$ ($\hbox{A}=\hbox{Fe}$ and Zn) vol.45, pp.6, 2009,
  2. Magneto-optical Kerr-effect enhancement in glass/Cu/SnO2/Co/SnO2 thin films vol.50, pp.9, 2011,
  3. Evidence of Spin Reorientation by Mössbauer Analysis vol.19, pp.2, 2014,