DOI QR코드

DOI QR Code

Mesh Segmentation With Geodesic Means Clustering of Sharp Vertices

첨예정점의 측지거리 평균군집화를 이용한 메쉬 분할

  • 박영진 (충북대학교 정보산업공학과 및 충북대학교 컴퓨터교육과) ;
  • 박찬 (충북대학교 정보산업공학과 및 충북대학교 컴퓨터교육과) ;
  • 이위 (우석대학교 게임콘텐츠학과) ;
  • 하종성 (우석대학교 게임콘텐츠학과) ;
  • 유관희 (충북대학교 정보산업공학과 및 충북대학교 컴퓨터교육과)
  • Published : 2008.05.31

Abstract

In this paper, we adapt the $\kappa$-means clustering technique to segmenting a given 3D mesh. In order to avoid the locally minimal convergence and speed up the computing time, first we extract sharp vertices from the mesh by analysing its curvature and convexity that respectively reflect the local and global geometric characteristics from the viewpoint of cognitive science. Next the sharp vertices are partitioned into $\kappa$ clusters by iterated converging with the $\kappa$-means clustering method based on the geodesic distance instead of the Euclidean distance between each pair of the sharp vertices. For obtaining the effective result of $\kappa$-means clustering method, it is crucial to assign an initial value to $\kappa$ appropriately. Hence, we automatically compute a reasonable number of clusters as an initial value of $\kappa$. Finally the mesh segmentation is completed by merging other vertices except the sharp vertices into the nearest cluster by geodesic distance.

Keywords

Mesh Segmentation;Sharp Vertex;Geodesic Distance$\kappa$-means Clustering

References

  1. B. Chazelle, "Strategies for polyhedral surface decomposition: an experimental study," Computational Geometry: Theory and Applications, Vol.7, pp.327-342, 1997. https://doi.org/10.1016/S0925-7721(96)00024-7
  2. M. Attene, S. Katz, M. Mortara, G. Patane, M. Spagnuolo, and A. Tal, "Mesh segmentation - a comparative study," IEEE Int. Conf. on Shape Modeling and Applications, pp.14-25, 2006. https://doi.org/10.1109/SMI.2006.24
  3. D. L. Page, A. F. Koschan, and M. A. Abidi, "Perception based 3d triangle mesh segmentation using fast matching watersheds," Conference on Computer Vision and Pattern Recognition, pp.27-32, 2003.
  4. T. Srinak and C. Kambhamettu, "A novel method for 3D surface mesh segmentation," Proc. of the 6th IASTED International Conference on Computers, Graphics, and Imaging, pp.212-217, 2003.
  5. M. Garland, A. Willmott, and P. S. Heckbert, "Hierarchical face clustering on polygonal surfaces," Proc. of the 2001 Symposium on Interactive 3D Graphics, pp.49-58, 2001.
  6. S. Katz and A. Tal, “Hierarchical mesh decomposition using fuzzy clustering and cuts," ACM Transactions on Graphics (TOG), Vol.22, No.3, pp.954-961, 2003. https://doi.org/10.1145/882262.882369
  7. T. Kanungo, D. M. Mount, N. S. Netanyahu, A. D. Piatko, R. Silverman, and A. Y. Wu, "An efficient k-means clustering algorithm: analysis and implementation," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.24, No.7, pp.881-892, 2002. https://doi.org/10.1109/TPAMI.2002.1017616
  8. A. P. Mangan and R. T. Whitaker, "Partitioning 3D surface meshes using watershed segmentation," IEEE Transactions on Visualization and Computer Graphics, Vol.5, No.4, pp.308-321, 1999. https://doi.org/10.1109/2945.817348
  9. T. K. Dey, J. Giesen, and S. Goswami, "Shape segmentation and matching with flow discretization," Proc. of the Workshop on Algorithms and Data Structures (WADS), Vol.2748, pp.25-36, 2003. https://doi.org/10.1007/978-3-540-45078-8_3
  10. K. Wu and M. D. Levine, "3D part segmentation using simulated electrical charge distributions," Proc. of the 1996 IEEE International Conference on Pattern Recognition (ICPR), pp.14-18, 1996. https://doi.org/10.1109/ICPR.1996.545983
  11. D. C.‐Steiner, P. Alliez, and M. Desbrun, "Variational shape approximation," Proc. of the 31st Annual Conference on Computer Graphics and Interactive Techniques(SIGGRAPH), pp.27-34, 2004.
  12. Y. Zhou and Z. Huang, "Decomposing polygon meshes by means of critical points," Proc. of MMM'04, pp.187-195, 2004.
  13. M. Mortara, G. Panae, M. Spagnuolo, B. Falcidieno, and J. Rossignac, "Blowing bubbles for the multi-scale analysis and decomposition of traingle meshes," Algorithmica, Special Issues on Shape Algorithms, Vol.38, No.2, pp.227-24, 2004.
  14. S. Katz, G. Leifman, and A. Tal, "Mesh segmentation using feature points and core extraction," Visual Computer, Vol.21, pp.649-658, 2005. https://doi.org/10.1007/s00371-005-0344-9
  15. J. M. Lien and N. M. Amato, "Approximate convex decomposition of polyhedra," Technical Report TR06-002, Dept. of Computer Science, Texas A&M University, 2006.
  16. M. Kass, A. Witkin, and D. Terzopoulos, "Snakes, active contour models," International Journal of Computer Vision, Vol.1, pp.321-331, 1987. https://doi.org/10.1007/BF00133570
  17. Y. Lee and S. Lee, "Geometric snakes for triangular meshes," Computer Graphics Forum, Vol.21, No.3, pp.229-238, 2002. https://doi.org/10.1111/1467-8659.t01-1-00582
  18. M. Gleicher, "Image Snapping," ACM Computer Graphics (Proc. of SIGGRAPH'95), pp.183-190, 1995.
  19. M. Gleicher, A Differential Approach to Graphical Manipulation, Ph.D. Carnegie Mellon University, 1994.
  20. K. H. Yoo and J. S. Ha, "Geometric snapping for 3d meshes," Workshop on Computer Graphics and Geometric Modelling (Lecture Notes on Computer Science, Vol.3039), pp.90-97, 2004.
  21. E. N. Mortensen and W. A. Barrett, "Intelligent scissors for image composition," ACM Computer Graphics (Proc. of SIGGRAPH '95), pp.191-198, 1995.
  22. A. X. Falcao, "User-steered image segmentation paradigms: livewire and livelane," Graphical Models and Image Processing, Vol.60, pp.223-260, 1998.
  23. A. X. Falcao, J. K. Udupa, and F. K. Miyazawa, "An Ultra-fast user-steered image segmentation paradigm: live wire on the fly," IEEE Tr. on Medical Imaging, Vol.19, No.1, pp.55-62, 2000. https://doi.org/10.1109/42.832960
  24. K. H. Yoo and J. S. Ha, "User-steered methods for extracting geometric features over 3D Meshes," Computer-Aided Design and Applications, Vol.2, No.1-4, pp.537-546, 2005. https://doi.org/10.1080/16864360.2005.10738403
  25. D. Malyszko and S. T. Wierzchon, "Standard and Genetic k-means Clustering Techniques in Image Segmentation," Computer Information Systems and Industrial Management Applications, 2007.
  26. J. R. Rommelse, H. X. Lin and T. F. Chan, "Efficient active contour and K-means algorithms in image segmentation," Distributed Computing and Applications, Vol.12, No.2 pp.101-120, 2004.
  27. M. Luo, Y. Ma, and H. J. Zhang, "A spatial constrained K-means approach to image segmentation," Proceedings of the 2003 Joint Conference of the Fourth International Conference on Information, Communications and Signal Processing, and the Fourth Pacific Rim Conference on Multimedia, Vol.2, pp.738-742, 2003. https://doi.org/10.1109/ICICS.2003.1292554
  28. D. D. Hoffman and W. A. Richards, "Parts of recognition," Cognition, Vol.18, 1984.
  29. D. D. Hoffman and M. Singh, "Salience of visual parts," Cognition, Vol.63, 1997.
  30. 임정훈, 박영진, 성동욱, 하종성, 유관희, "전역 및 국부 기하 특성을 반영한 메쉬 분할", 정보처리학회 논문지, 제14-A권, 제7호, pp.435-442, 2007.
  31. T. Kanungo, "An efficient k-means clustering algorithm: analysis and implementation," IEEE Transactions on Pattern Analysis and Machine Intelligence, pp.881-892, 2002. https://doi.org/10.1109/TPAMI.2002.1017616
  32. E. W. Dijkstra, "A note on two problems in connexion with graphs," Numerische Mathematik, Vol.1 pp.269-271, 1959. https://doi.org/10.1007/BF01386390
  33. http://www.cgal.org.
  34. P. Shilane, M. Kazhdan, P. Min, and T. Funkhouser, "The Princeton shape benchmark," Proc. of Shape Modeling International, 2004.