DOI QR코드

DOI QR Code

Some Fixed Point Theorems for Multivalued Maps Satisfying an Implicit Relation on Metrically Convex Spaces

Altun, Ishak;Turkoglu, Duran

  • Received : 2006.12.07
  • Published : 2008.09.30

Abstract

In this paper, we give some fixed point theorems for multivalued maps satisfying an implicit relation on metrically convex spaces. Our results extend and generalize some fixed point theorem in the literature.

Keywords

fixed point;multivalued maps;implicit relation;metrically convex space

References

  1. A. Ahmad and M. Imdad, On common fixed point of mappings and multivalued mappings, Rad. Mat., 8(1) (1992), 147-158.
  2. A. Ahmad and M. Imdad, Some common fixed point theorems for mappings and multi-valued mappings, J. Math. Anal. Appl., 218(2) (1998), 546-560. https://doi.org/10.1006/jmaa.1997.5738
  3. A. Ahmad and A. R. Khan, Some common fixed point theorems for non-self-hybrid contractions, J. Math. Anal. Appl., 213(1) (1997), 275-286. https://doi.org/10.1006/jmaa.1997.5537
  4. I. Altun, H. A. Hancer and D. Turkoglu,A fixed point theorem for multi-maps satisfying an implicit relation on metrically convex metric spaces, Mathematical Commun., 11 (2006), 17-23.
  5. N. A. Assad, Fixed point theorems for set valued transformations on compact sets, Boll. Un. Mat. Ital., 8(4) (1973), 1-7.
  6. N. A. Assad and W. A. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pacific J. Math., 43(3) (1972), 553-562. https://doi.org/10.2140/pjm.1972.43.553
  7. Lj. B. Ciric, Fixed Point Theory, Faculty of Mechanical Engineering University of Belgrade, Beograd, 2003.
  8. Lj. B. Ciric and J. S. Ume, On an extension of a theorem of Rhoades, Rev. Roumaine Math. Pures Appl., 49(2) (2004), 103-112.
  9. B. C. Dhage, U. P. Dolhare and A. Petrusel, Some common fixed point theorems for sequences of non-self multivalued operators in metrically convex metric spaces, Fixed Point Theory, 4(2) (2003), 143-158.
  10. O. Hadzic, On coincidence points in convex metric spaces, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 19(2) (1989), 233-240.
  11. O. Hadzic and Lj. Gajic, Coincidence points for set-valued mappings in convex metric spaces, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 16(1) (1986), 13-25.
  12. N. J. Huang and Y. J. Cho, Common fixed point theorems for a sequence of set-valued mappings, J. Korean Math. Soc., 4(1) (1997), 1-10.
  13. M. Imdad, A. Ahmad, and S. Kumar, On nonlinear nonself hybrid contractions, Rad. Mat., 10(2) (2001), 233-244.
  14. M. Imdad and Javid Ali, A common fixed point theorem for nonself multi-maps satisfying an implicit relation, Global J. Math. Anal., 1 (2007), 74-83.
  15. M. Imdad and L. Khan, Fixed point theorems for a family of hybrid pairs of mappings in metrically convex spaces, Fixed Point Theory Appl., 2005, no. 3, 281-294.
  16. M. Imdad, S. Kumar and M. S. Khan, Remarks on some fixed point theorems satisfying implicit relations, Rad. Math., 11 (1) (2002), 135-143.
  17. S. Itoh, Multivalued generalized contractions and fixed point theorems, Comment. Math. Univ. Carolinae, 18(2) (1977), 247-258.
  18. H. Kaneko and S. Sessa, Fixed point theorems for compatible multi-valued and singlevalued mappings, Int. J. Math. Math. Sci., 12(2) (1989), 257-262. https://doi.org/10.1155/S0161171289000293
  19. M. S. Khan, Common fixed point theorems for multivalued mappings, Pacific J. Math., 95(2) (1981), 337-347. https://doi.org/10.2140/pjm.1981.95.337
  20. M. S. Khan, H. K. Pathak, and M. D. Khan, Some fixed point theorems in metrically convex spaces, Georgian Math. J., 7(3) (2000), 523-530.
  21. S. B. Nadler Jr., Multi-valued contraction mappings, Pacific J. Math., 30(2) (1969), 475-488. https://doi.org/10.2140/pjm.1969.30.475
  22. R. P. Pant, Common fixed points of noncommuting mappings, J. Math. Anal. Appl., 188(2) (1994), 436-440. https://doi.org/10.1006/jmaa.1994.1437
  23. V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonsratio Math., 32 (1999), 157-163.
  24. V. Popa, A general coincidence theorem for compatible multivalued mappings satisfying an implicit relation, Demonstratio Math., 33 (2000), 159-164.
  25. V. Popa and D. Turkoglu, Some fixed point theorems for hybrid contractions satisfying an implicit relation, Stud. Cercet. Stiin. Ser. Mat. Univ. Bacau, 1998, no. 8, 75-86 (2000).
  26. Rhoades B. E., A fixed point theorem for a multi-valued non-self mappings, Comment. Math. Univ. Carolinae, 37 (1996), 401-404.
  27. S. Sharma and B. Desphande, On compatible mappings satisfying an implicit relation in common fixed point consideration, Tamkang J. Math., 33(3) (2002), 245-252.