Lévy Khinchin Formula on Commutative Hypercomplex System

Zabel, Ahmed Moustfa;Dehaish, Buthinah Abdullateef Bin

  • Received : 2005.10.27
  • Published : 2008.12.31


A commutative hypercomplex system $L_1$(Q,m) is, roughly speaking, a space which is defined by a structure measure (c(A,B, r), (A,$B{\in}{\beta}$(Q)). Such space has bee studied by Berezanskii and Krein. Our main purpose is to establish a generalization of convolution semigroups and to discuss the role of the L$\'{e}$vy measure in the L$\'{e}$vy-Khinchin representation in terms of continuous negative definite functions on the dual hypercomplex system.


Hypercomplex system;positive and negative definite functions;convolution semigroup;L$\'{e}$vy Khinchin formula


  1. Ju. M. Berezanskii and A. A. Kalyuzhnyi, Harmonic Analysis in Hypercomplex Systems, Kive, Naukova Dumka(1992).
  2. Ju. M. Berezanskii and A. A. Kalyuzhnyi, Hypercomplex systems and hypergroups: Connections and distributions, Contemporary Mathematics, 183(1995), 21-44.
  3. Ju. M. Berezanskii and Ju. G. Kondratiev, Spectral Methods in Infinite Dimensional Analysis, Kluwer Academic Publishers, Netherlands, 1(1995).
  4. C. Berg, J. P. R. Christensen and P. Ressel, Harmonic Analysis on Semigroups, Springer-Verlage, Berlin-Heidelberg-New York (1984).
  5. C. Berg and G. Forst, Potential Theory on Locally Compact Abelian Groups, Springer-Verlage, Berlin-Heidelberg-New York (1975).
  6. J. Faraut and M. A. Piardello, The Plancherel measure for symmetric groups, Ann. Math. Pure. Appl., 198(1982), 151-155.
  7. K. Harzallah, Sur une. demonstration de la formula de Levy Khinchine, Ann. Inst. Fourier, 192(1969), 527-532.
  8. W. Hazod, Uber die Levy Hincin Formel auf lokalkompakten topologischen Gruppen. Z., Wahrscheinlichkeitstheorie verw. Geb., 25(1973), 301-322.
  9. G. A. Hunt, Semigroups of measures on Lie groups., Trans. Amer. Math. Soc., 81(1956), 264-293.
  10. R. I. Jewett, Spaces with an abstract convolution of measures, Adv. in Math., 18(1975), 1-101.
  11. A. A. Kalyuzhnyi, A theorem on the existence of multiplicative measure, Ukr. Math. Zh., 35(3)(1983), 369-371.
  12. R. Lasser, On the Levy Hinˇcin formula for commutative hypergroups, Lecture Notes in Math, 1064(1984), 298-308.
  13. K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York, London, (1967).
  14. W. Rudin, Real and Complex Analysis, McGraw-Hill Book Co., New York, (1974).
  15. A. M. Zabal and Buthinah A. Bin Dehaish , Negative definite functions on hypercomplex systems, Accepted for publication in Kyungbook Math. J., 2007.

Cited by

  1. Exponentially Convex Functions on Hypercomplex Systems vol.2011, 2011,