Han, Sang-Eon

  • Received : 2008.05.21
  • Accepted : 2008.05.29
  • Published : 2008.06.25


Digital geometry has strongly contributed to the study of a discrete topological space $X{\subset}{\mathbf{Z}}^n$ with k-adjacency of ${\mathbf{Z}}^n$. As a survey-type article, we review various utilities of digital geometry.


k-adjacency relations of ${\mathbf{Z}}^n$;Digital continuity;Geometric realization;Relative k-homotopy;Strong k-deformation retract;k-homotopic thinning;($k_0,k_1$)-isomorphism;Digital ($k_0,k_1$)-covering;Discrete Deck's transformation group;Universal ($k_0,k_1$)-covering


  1. R. Ayala, E. Dominguez, A.R. Frances, and A. Quintero, Homotopy in digital spaces, Discrete Applied Math, 125(1) (2003) 3-24.
  2. G. Bertrand, Simple points, topological numbers and geodesic neighborhoods in cubic grids, Pattern Recognition Letters 15 (1994) 1003-1011.
  3. G. Bertrand and M. Malgouyres, Some topological properties of discrete surfaces, Jour. of Mathematical Imaging and Vision 20 (1999) 207-221.
  4. L. Boxer, A classical construction for the digital fundamental group, Jour. of Mathematical Imaging and Vision, 10 (1999), 51-62.
  5. L. Boxer, Digital Products, Wedge; and Covering Spaces, Jour. of Mathematical Imaging and Vision 25 (2006) 159-171.
  6. A.I. Bykov, L.G. Zerkalov, M.A. Rodriguez Pineda, Index of a point of 3-D digital binary image and algorithm of computing its Euler characteristic, Pattern Recognition 32 (1999) 845-850.
  7. S. Fourey and R. Malgouyres, A digital linking number for discrete curves, International Journal of Pattern Recognition and Artificial Intelligence 15 (2001) 1053-1074.
  8. S.E. Han, Computer topology and its applications, Honam Math. Jour. 25(1)(2003) 153-162.
  9. S.E. Han, Minimal digital pseudotorus with k-adjacency, Honam Mathematical Journal 26(2)(2004) 237-246.
  10. S.E. Han, Algorithm for discriminating digital images w.r.t. a digital ($k_0\,,\,k_1$) homeomorphism, Jour. of Applied Mathematics and Computing 18(1-2)(2005) 505-512.
  11. S.E. Han, Digital coverings and their applications, Jour. of Applied Mathematics and Computing 18(1-2)(2005) 487-495.
  12. S.E. Han, Non-product property of the digital fundamental group, Information Sciences 171 (1-3) (2005) 73-91.
  13. S.E. Han, On the simplicial complex stemmed from a digital graph, Honam Mathematical Journal 27 (1) (2005) 115-129.
  14. S.E. Han, Connected sum of digital closed surfaces, Information Sciences 176(3)(2006) 332-348.
  15. S.E. Han, Discrete Homotopy of a Closed k-Surface, LNCS 4040, Springer-Verlag Berlin, pp.214-225 (2006).
  16. S.E. Han, Erratum to "Non-product property of the digital fundamental group", Information Sciences 176(1)(2006) 215-216.
  17. S.E. Han, Minimal simple closed 18-surfaces and a topological preservation of 3D surfaces, Information Sciences 176(2)(2006) 120-134.
  18. S.E. Han, Digital fundamental group and Euler characteristic of a connected sum of digital closed surfaces, Information Sciences 177(16)(2007) 3314-3326.
  19. S.E. Han, Remarks on digital k-homotopy equivalence, Honam Mathematical Journal 29(1) (2007) 101-118.
  20. S.E. Han, Strong k-deformation retract and its applications, Journal of the Korean Mathematical Society 44(6)(2007) 1479-1503.
  21. S.E. Han, The fundamental group of a closed k-surface, Information Sciences 177(18)(2007) 3731-3748.
  22. S.E. Han, Comparison among digital fundamental groups and its applications, Information Sciences 178(2008) 2091-2104.
  23. S.E. Han, Equivalent ($k_0,\,k_1$)-covering and generalized digital lifting, Information Sciences 178(2)(2008) 550-561.
  24. S.E. Han, The k-homotopic thinning and a torus-like digital image in $Z^n$, Journal of Mathematical Imaging and Vision 31 (1) (2008) 1-16.
  25. S.E. Han, Map preserving local properties of a digital image, Acta Applicanta Mathematicae (2008), to appear.
  26. S.E. Han and B.G. Park, Digital graph ($k_0,\,k_1$)-homotopy equivalence and its applications,
  27. S.E. Han and B.G. Park, Digital graph ($k_0,\,k_1$)-isomorphism and its applications,
  28. E. Khalimsky, Motion, deformation, and homotopy in finite spaces, Proceedings IEEE International Conferences on Systems, Man, and Cybernetics (1987) 227-234.
  29. T.Y. Kong, A digital fundamental group Computers and Graphics 13 (1989) 159-166.
  30. T.Y. Kong, A. Rosenfeld, Topological Algorithms for the Digital Image Processing, Elsevier Science, Amsterdam, (1996).
  31. R. Malgouyres, Homotopy in 2-dimensional digital images, Theoretical Computer Science 230 (2000) 221-233.
  32. W.S. Massey, Algebraic Topology, Springer-Verlag, New York, 1977.
  33. A. Rosenfeld, Arcs and curves in digital pictures, Jour. of the ACM 20 (1973) 81-87.
  34. A. Rosenfeld and R. Klette, Digital geometry, Information Sciences 148 (2003) 123-127.
  35. E.H. Spanier, Algebraic Topology, McGraw-Hill Inc., New York, 1966.