DOI QR코드

DOI QR Code

AN ALGEBRA WITH RIGHT IDENTITIES AND ITS ANTISYMMETRIZED ALGEBRA

Choi, Seul-Hee

  • Received : 2008.02.13
  • Accepted : 2008.04.10
  • Published : 2008.06.25

Abstract

We define the Lie-admissible algebra NW$({\mathbb{F}}[e^{A[s]},x_1,{\cdots},x_n])$ in this work. We show that the algebra and its antisymmetrized (i.e., Lie) algebra are simple. We also find all the derivations of the algebra NW$(F[e^{{\pm}x^r},x])$ and its antisymmetrized algebra W$(F[e^{{\pm}x^r},x])$ in the paper.

Keywords

Lie-admissible algebra;Lie algebra;simple;automorphism;derivation

References

  1. Mohammad H. Ahmadi, Ki-Bong Nam, and Jonathan Pakianathan, Lie admissible non-associative algebras, Algebra Colloquium, Vol. 12, No. 1, World Scientific, March, 2005, 113-120. https://doi.org/10.1142/S1005386705000106
  2. Seul Hee Choi and Ki-Bong Nam, The Derivation of a Restricted Weyl Type Non-Associative Algebra, Hadronic Journal, Vol. 28, Number 3, Hadronic Press, June, 2005, 287-295.
  3. Seul Hee Choi and Ki-Bong Nam, Weyl Type Non-Associative Algebra II, SEAMS Bull Mathematics, Vol. 29, 2005.
  4. Seul Hee Choi and Ki-Bong Nam, Derivations of a restricted Weyl Type Algebra I, Rocky Mountain Journal of Mathematics, Vol. 37, No. 6, 2007, 67-84. https://doi.org/10.1216/rmjm/1181069320
  5. Seul Hee Choi and Ki-Bong Nam, Derivations of a restricted Weyl type algebra containing the polynomial ring, Communications in Algebra, Accepted, 2007. https://doi.org/10.1080/00927870802107835
  6. I. N. Herstein, Noncommutative Rings, Carus Mathematical Monographs, Mathematical association of America, 100-101.
  7. J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York, 1987, 7-21.
  8. V. G. Kac, Description of Filtered Lie Algebra with which Graded Lie algebras of Cartan type are Associated, Izv. Akad. Nauk SSSR, Ser. Mat. Tom, 38, 1974, 832-834.
  9. T. Ikeda, N. Kawamoto, Ki-Bong Nam, A class of simple subalgebras of generalized Witt algebras, Groups-Korea '98(Pusan), de Gruyter, Berlin, 2000, 189-202.
  10. A. I. Kostrikin and I. R. Safarevic, Graded Lie algebras of finite characteristic, Math. USSR Izv., 3, No. 2, 1970, 237-240.
  11. Ki-Suk Lee and Ki-Bong Nam, Some W-type algebras I., J. Appl. Algebra Discrete Struct. 2, No. 1, 2004, 39-46.
  12. Ki-Bong Nam, Generalized W and H type Lie Algebras, Algebra Colloquium, 1999, 329-340.
  13. Ki-Bong Nam and Seul Hee Choi, Automorphism group of non-associative algebras $\overline{WN_{2,0,0_1}}$, J. Computational Mathematics and Optimization, Vol. 1, No. 1, 2005, 35-44.
  14. D. Passman, Simple Lie Algebras of Witt-Type, Journal of Algebra, 206, 1998, 682-692. https://doi.org/10.1006/jabr.1998.7444
  15. A. N. Rudakov, Groups of Automorphisms of Infinite-Dimensional Simple Lie Algebras, Math. USSR-Izvestija, 3, 1969, 707-722. https://doi.org/10.1070/IM1969v003n04ABEH000798

Cited by

  1. NOTES ON AN ALGEBRA WITH SCALAR DERIVATIONS vol.36, pp.1, 2014, https://doi.org/10.5831/HMJ.2014.36.1.179
  2. A GROWING ALGEBRA CONTAINING THE POLYNOMIAL RING vol.32, pp.3, 2010, https://doi.org/10.5831/HMJ.2010.32.3.467