DOI QR코드

DOI QR Code

EINSTEIN HALF LIGHTLIKE SUBMANIFOLDS WITH A KILLING CO-SCREEN DISTRIBUTION

  • Jin, Dae-Ho
  • Received : 2008.06.04
  • Accepted : 2008.07.28
  • Published : 2008.09.25

Abstract

In this paper we study the geometry of codimension 2 screen conformal Einstein half lightiike submanifolds M of a semi-Riemannian manifold $(\={M}(c),\={g})$ of constant curvature c, with a Killing co-screen distribution on $\={M}$. The main result is a classification theorem for screen homothetic Einstein half lightlike submanifold of Lorentzian space forms.

Keywords

Einstein submanifolds;Screen conformals

References

  1. Chen, B. Y., Geometry of Submanifolds, Marcel Dekker, New York, 1973.
  2. Duggal, K. L. and Bejancu, A., Lightlike Submanifolds of codimension 2, Math. J. Toyama Univ., vol. 15, 1992, 59-82.
  3. Duggal, K. L. and Bejancu, A., Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
  4. Duggal, K. L. and Jin, D. H., Half-Lightlike Submanifolds of Codimension 2, Math. J. Toyama Univ., vol. 22, 1999, 121-161.
  5. Duggal, K. L. and Jin, D. H., TotaIly umbilical lightlike submanifolds, Kodai Math. J., 26, 2003, 49-68. https://doi.org/10.2996/kmj/1050496648
  6. Duggal, K. L. and Jin, D. H. Null curves and hypersurfaces of semi-Riemannian manifolds, World Scientific, 2007.
  7. Fialkow, A. Hpersurfaces of a space or constant curvature, Ann. of Math. 39, 1938, 762-785. https://doi.org/10.2307/1968462
  8. Jin, D. H., Geometry or coisotropic submanifolds, J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. vol. 8, No. 1, 2001, 33-46.
  9. O'Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, 1983.
  10. Thomas, T. Y., On closed spaces of constant mean curvature, Amer. J. of Math. 58, 1936, 702-704. https://doi.org/10.2307/2371240

Cited by

  1. A SEMI-RIEMANNIAN MANIFOLD OF QUASI-CONSTANT CURVATURE ADMITS SOME HALF LIGHTLIKE SUBMANIFOLDS vol.50, pp.3, 2013, https://doi.org/10.4134/BKMS.2013.50.3.1041
  2. THE CURVATURE OF HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD OF QUASI-CONSTANT CURVATURE vol.19, pp.4, 2012, https://doi.org/10.7468/jksmeb.2012.19.4.327
  3. A CHARACTERIZATION OF SCREEN CONFORMAL HALF LIGHTLIKE SUBMANIFOLDS vol.31, pp.1, 2009, https://doi.org/10.5831/HMJ.2009.31.1.017
  4. EINSTEIN HALF LIGHTLIKE SUBMANIFOLDS WITH SPECIAL CONFORMALITIES vol.49, pp.6, 2012, https://doi.org/10.4134/BKMS.2012.49.6.1163
  5. REAL HALF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER MANIFOLD vol.26, pp.4, 2011, https://doi.org/10.4134/CKMS.2011.26.4.635
  6. Lightlike Submanifolds of a Semi-Riemannian Manifold of Quasi-Constant Curvature vol.2012, 2012, https://doi.org/10.1155/2012/636782