DOI QR코드

DOI QR Code

Degradation of Three Aromatic Dyes by White Rot Fungi and the Production of Ligninolytic Enzymes

  • Jayasinghe, Chandana (Department of Biology, University of Incheon) ;
  • Imtiaj, Ahmed (Department of Biology, University of Incheon) ;
  • Lee, Geon-Woo (Department of Biology, University of Incheon) ;
  • Im, Kyung-Hoan (Department of Biology, University of Incheon) ;
  • Hur, Hyun (Department of Biology, Dongguk University) ;
  • Lee, Min-Woong (Department of Biology, Dongguk University) ;
  • Yang, Hee-Sun (Chemichal Safety and Accident Prevention Division, National Institute of Environmental Research) ;
  • Lee, Tae-Soo (Department of Biology, University of Incheon)
  • 발행 : 2008.06.30

초록

This study was conducted to evaluate the degradation of aromatic dyes and the production of ligninolytic enzymes by 10 white rot fungi. The results of this study revealed that Pycnoporus cinnabarinus, Pleurotus pulmonarius, Ganoderma lucidum, Trametes suaveolens, Stereum ostrea and Fomes fomentarius have the ability to efficiently degrade congo red on solid media. However, malachite green inhibited the mycelial growth of these organisms. Therefore, they did not effectively decolorize malachite green on solid media. However, P. cinnabarinus and P. pulmonarius were able to effectively decolorize malachite green on solid media. T. suaveolens and F. rosea decolorized methylene blue more effectively than any of the other fungi evaluated in this study. In liquid culture, G. lucidum, P. cinnabarinus, Naematoloma fasciculare and Pycnoporus coccineus were found to have a greater ability to decolorize congo red. In addition, P. cinnabarinus, G lucidum and T. suaveolens decolorized methylene blue in liquid media more effectively than any of the other organisms evaluated in this study. Only F. fomentarius was able to decolorize malachite green in liquid media, and its ability to do so was limited. To investigate the production of ligninolytic enzymes in media containing aromatic compounds, fungi were cultured in naphthalene supple mented liquid media. P. coccineus, Coriolus versicolor and P. cinnabarinus were found to produce a large amount of laccase when grown in medium that contained napthalene.

키워드

참고문헌

  1. Ardon, O., Kerem, Z. and Hadar, Y. 1996. Enhancement of laccase activity in liquid cultures of the ligninolytic fungus Pleurotus ostreatus by cotton stalk extract. J. Biotechnol. 51:201- 207 https://doi.org/10.1016/S0168-1656(96)01597-0
  2. Arora, D. S. and Gill, P. K. 2001. Effects of various media and supplements on laccase production by some white rot fungi. Biores. Technol. 77:89-91 https://doi.org/10.1016/S0960-8524(00)00114-0
  3. Aust, S. D., Swaner, P. R. and Stahl, J. D. 2004. Detoxification and metabolism of chemicals by white-rot fungi. Pesticide decontamination and detoxification. Washington, D. C. Oxford University Press. pp. 3-14
  4. Baheri, H. and Meysami, P. 2001. Feasibility of fungi bioaugmentation in composting a flare pit soil. J. Hazard. Mater. 89:279- 286
  5. Barr, D. P. and Aust, S. D. 1994. Enzyme degradation of lignin. Rev. Environ. Contam. Toxicol. 138:49-72
  6. Boer, C. G., Obici, L., DeSouza, C. G. M. and Peralta, R. M. 2004. Decolorization of synthetic dyes by solid state cultures of Lentinula (Lentinus) edodes producing manganese peroxidase as the main ligninolytic enzyme. Bioresour. Technol. 94:107-112 https://doi.org/10.1016/j.biortech.2003.12.015
  7. Boominathan, K. and Reddy, C. A. 1992. Fungal degradation of lignin: biotechnological applications. Hand book of applied mycology. 4. Fungal biotechnology. New York, N. Y: Marcel Dekker, Inc. pp. 763-822
  8. Bourbounnais, R., Paice, M. G., Reid, I. D., Lanthier, P. and Yaguchi, M. 1995. Lignin oxidation by laccase isozymes from Trametes versicolor. Appl. Environ. Microbiol. 61:1876-1880
  9. Buswell, J. A. and Odier, E. 1987. Lignin biodegradation. Crit. Rev. Biotechnol. 6:1-60 https://doi.org/10.3109/07388558709086984
  10. Chavez-Gomez, B., Quintero, R., Esparza-Garcia, F., Mesta- Howard, A., De la Serna, F. J. Z. D. Hernandez-Rodriguez, C., Gillen, T., Poggi-Varaldo, H., Barrera-Cortes, J. and Rodriguez- Vazquez, R. 2003. Removal of phenanthrene from soil by cocultures of bacteria and fungi pregrown on sugarcane bagasse pith. Bioreso. Techno. 89:177-183. https://doi.org/10.1016/S0960-8524(03)00037-3
  11. Champagne, P. P. and Ramsay, J. A. 2005. Contribution of manganese peroxidase and laccase to dye decolorization by Trametes versicolor. App. Microbiol. Biotech. 69:276-285 https://doi.org/10.1007/s00253-005-1964-8
  12. Cripps, C., Bumpus, J. A. and Aust, S. D. 1990. Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 56:1114-1118
  13. DeJong, E., Field, J. M. and De Bont, J. A. M. 1994. Aryl alcohols in the physiology of ligninolytic fungi. FEMS Microbiol. Rev. 13:153-188 https://doi.org/10.1111/j.1574-6976.1994.tb00041.x
  14. Eichlerova, I., Homolka, L. and Nerud, F. 2005. Synthetic dye decolorization capacity of white rot fungus Dichomitus squalens. Bioresour. Technol. 97:2153-2159 https://doi.org/10.1016/j.biortech.2005.09.014
  15. Eichlerova, I., Homolka, L. and Nerud, F. 2006. Evaluation of synthetic dye decolorization capacity in Ischnoderma resinosum. J. Ind. Microbiol. Biotech. 33:759-766 https://doi.org/10.1007/s10295-006-0102-7
  16. Glenn, J. K. and Gold, M. H. 1985. Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycetes Phanerochaete chrysosporium. Arch. Biochem. Biophys. 242:329-341 https://doi.org/10.1016/0003-9861(85)90217-6
  17. Hatakka, A. 1994. Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol. Rev. 13:125-135 https://doi.org/10.1111/j.1574-6976.1994.tb00039.x
  18. Hestbjerg, H. P., Willumsen, A., Christensen, M., Andersen, O. and Jacobsen, C. S. 2003. Bioaugmentation of tar-contaminated soils under field conditions using Pleurotus ostreatus refuse from commercial mushroom production. Environ. Toxicol. Chem. 22:692-698 https://doi.org/10.1897/1551-5028(2003)022<0692:BOTCSU>2.0.CO;2
  19. Johnston, C. G., Becerra, M. A., Lutz, R. L., Staton, M. A., Axtell, C. A. and Bass, B. D. 1997. Fungal remediation of PCP and TNT contaminated soil in the field. In-Situ and On- Site Bioremedi. 2:537-544
  20. Kaluskar, V., Kapandis, P. B., Jasper, C. H. and Penninckx, J. M. 1999. Production of laccase by immobilized cells of Agaricus sp. Appl. Biochem. Biotechnol. 76:161-170 https://doi.org/10.1385/ABAB:76:3:161
  21. Kirk, T. K. and Farrell, R. L. 1987. Enzymatic "combustion": the microbial degradation of lignin. Annu. Rev. Microbiol. 41:465- 505 https://doi.org/10.1146/annurev.mi.41.100187.002341
  22. Kling, S. and Neto, J. 1991. Oxidation of methylene blue by crude lignin peroxidase from Phanerochaete chrysosporium. J. Biotech. 21:295-300 https://doi.org/10.1016/0168-1656(91)90050-6
  23. Lang, E., Eller, I., Kleeberg, R., Martens, R. and Zadrazil, F. 1995. Interaction of white-rot fungi and micro-organisms leading to biodegradation of soil pollutants In: Proceedings of the 5th international FZK/TNO conference on contaminated soil 30th Oct.-5 Nov. 1995 Maastricht
  24. Lestan, D., Lestan, M. and Lamar, R. T. 1997. Fungal inocula, proceedings of international symposium environmental biotechnology biotechnology, Oostende. pp. 357-360.
  25. Levin, L., Papinutti, L. and Forchiassin, F. 2004. Evaluation of Argentinean white rot fungi for their ability to produce ligninmodifying enzymes and decolorize industrial dyes. Bioresour. Technol. 94:169-176 https://doi.org/10.1016/j.biortech.2003.12.002
  26. Mansur, M., Suarez, T., Fernandez-Larrea, J. B. Brizuela, M. A. and Gonzales, A. E. 1997. Identification of a laccase gene family in the new lignin-degrading basidiomycete. Appl. Environ. Microbiol. 63:2637-2646
  27. McGughan, B. R., Lees, Z. M. and Senior, E. 1995. Bioremediation of an oil-contaminated soil by fungal intervention. Battelle Press, Columbus, pp. 149-156
  28. Novotny, C., Svobodova, K., Kasinath, A. and Erbanova, P. 2004. Biodegradation of synthetic dyes by Irpex lacteus under various growth conditions. 12th Int. Biodeterioration and Biodegradation Symposium 54:215-223
  29. Nozaki, K., Beh, C. H., Mizuno, M., Isobe, T., Shiroishi, M., Kanda, T. and Amano, Y. 2008. Screening and investigation of dye decolorization activities of basidiomycetes. J. Biosci. Bioeng. 105:69-72 https://doi.org/10.1263/jbb.105.69
  30. Pelaez, F., Martinez, M. J. and Martinez, A. T. 1995. Screening of 68 species of basidiomycetes for enzymes involved in lignin degradation. Mycol. Res. 99:37-42. https://doi.org/10.1016/S0953-7562(09)80313-4
  31. Radha, K. V., Regupathi, I., Arunagiri, A. and Murugesan, T. 2005. Decolorization studies of synthetic dyes using Phanerochaete chrysosporium and their kinetics. Proc. Biochem. 40:3337-3345
  32. Ravelet, C., Grosset, C., Montuelle, B., Benoit-Guyod, J. L. and Alary, J. 2001. Liquid chromatography study of pyrene degradation by two micromycetes in a fresh water sediment. Chemosp. 44:1541-1546 https://doi.org/10.1016/S0045-6535(00)00531-2
  33. Reddy, C. A. 1998. The potential white-rot fungi in the treatment of pollutants. Curr. Opin. Biotechnol. 6:320-328 https://doi.org/10.1016/0958-1669(95)80054-9
  34. Schliephake, K. and Lonergan, G. T. 1996. Laccase variation during dye decolourisation in a 200 l packed-bed bioreactor. Biotechnol. Lett. 18:881-886 https://doi.org/10.1007/BF00154614
  35. Schnick, R. A. 1988. The impetus to register new therapeutics for aquaculture. Prog. Fish-Cult. 50:190-196 https://doi.org/10.1577/1548-8640(1988)050<0190:TITRNT>2.3.CO;2
  36. Selvam, K., Swaminathan, K. and Chae, K. S. 2003. Decolourization of azo dyes and a dye industry effluent by a white rot fungus Thelephora sp. Bioreso. Technolo. 88:115-119 https://doi.org/10.1016/S0960-8524(02)00280-8
  37. Spadaro, J. T., Gold, M. H. and Renganathan, V. 1992. Degradation of azo dyes by the lignin degrading fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58:2397-2401
  38. Svobodova, K., Erbanova, P., Sklenar, J. and Novotny, C. 2006. The role of Mn-dependent peroxidase in dye decolorization by static and agitated cultures of Irpex lacteus. Folia. Microbiol. 51:573-578 https://doi.org/10.1007/BF02931622
  39. Takada, S., Nakamura, M., Matsudo, T., Kondo, R. and Sakai, K. 1996. Degradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by the white rot fungus Phanerochaete sordida YK-624. Appl. Environ. Microbiol. 62:4323- 4328
  40. Tien, M. and Kirk, T. K. 1983. Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium. Burds. Scie. 221:661-663 https://doi.org/10.1126/science.221.4611.661
  41. Yesilada, O., Unyayar, A. and Fiskin, K. 1991. Determination of the laccase and peroxidase enzyme activities of Coriolus versicolor in the Vinasse medium. Tr. J. Biol. 15:152-157

피인용 문헌

  1. Trichoderma longibrachiatum Evx1 is a fungal biocatalyst suitable for the remediation of soils contaminated with diesel fuel and polycyclic aromatic hydrocarbons vol.23, pp.9, 2016, https://doi.org/10.1007/s11356-016-6167-6
  2. The ability of brown-rot fungus Daedalea dickinsii to decolorize and transform methylene blue dye vol.33, pp.5, 2017, https://doi.org/10.1007/s11274-017-2256-z
  3. Malachite Green and Crystal Violet Decolorization by Ganoderma lucidum and Pleurotus ostreatus Supernatant and by rGlLCC1 and rPOXA 1B Concentrates: Molecular Docking Analysis pp.1559-0291, 2017, https://doi.org/10.1007/s12010-017-2560-y
  4. Potential of Bacillus sp. LG7 as a Promising Source of Ligninolytic Enzymes for Industrial and Biotechnological Applications pp.2250-1746, 2017, https://doi.org/10.1007/s40011-017-0957-6
  5. Development of an RP-UHPLC-PDA method for quantification of free gossypol in cottonseed cake and fungal-treated cottonseed cake vol.13, pp.5, 2018, https://doi.org/10.1371/journal.pone.0196164