Synthesis and Herbicidal Activity of New 1-(4-chloro-2-fluoro-5-propargyloxyphenyl)-3-thiourea Derivatives

새로운 1-(4-chloro-2-fluoro-5-propargyloxyphenyl)-3-thiourea 유도체의 합성과 제초활성

  • Park, Kwaun-Yong (Division of Applied Biologies and Chemistry, College of Agriculture and Life Science, Chungnam National University) ;
  • Song, Jong-Hwan (Korea Research Institute of Chemical Technology) ;
  • Jeon, Dong-Ju (Korea Research Institute of Chemical Technology) ;
  • Soung, Min-Gyu (Division of Applied Biologies and Chemistry, College of Agriculture and Life Science, Chungnam National University) ;
  • Sung, Nack-Do (Division of Applied Biologies and Chemistry, College of Agriculture and Life Science, Chungnam National University)
  • 박관용 (충남대학교 농업생명과학대학 응용생물화학부) ;
  • 송종환 (한국화학연구원 신약연구단) ;
  • 전동주 (한국화학연구원 신약연구단) ;
  • 성민규 (충남대학교 농업생명과학대학 응용생물화학부) ;
  • 성낙도 (충남대학교 농업생명과학대학 응용생물화학부)
  • Published : 2008.06.30


To develop the third generation herbicidal cyclic imide (Cyl) derivatives, the new 1-(4-chloro-2-fluoro-5-propargyloxyphenyl)-3-thiourea derivatives were synthesized and measured their herbicidal activities ($pI_{50}$) in vivo (preemergence) against rice plant (Orysa Sativa) and barnyard grass (Echinochlor crus-galli). The synthetic yields (%) of aryl derivatives (21-40) in general was higher than that of alkyl derivatives (1-20). In case of alkyl derivatives, the synthetic yield depended on the structural forms of alkyl amine groups. From the results of correlation analysis between herbicidal activities and substituents, the compound 8 and 24 showed the highest herbicidal activity against the shoot and root of barnyard grass. Especially, the compounds 11 and 6 showed the selective herbicidal activities between rice plant and barnyard grass.


  1. Chung, K. S., S. C. Jang, K. S. Choi and N. D. Sung (2006) Comparative molecular field analysis (CoMFA) on the herbicidal activities of new 5-benzofuryl-2-[1-(alkyloxyimino) alkyl]-3-hydroxycyclohex-2-en-1-ones. J. Korean Soc. Appl. Biol. Chem., 49: 238-242
  2. Matringe, J. M. and N. Carmadro (1993) Protoporphyrinogen oxidase the molecular target site for peroxidizing herbicides, Crop Protection Conference, 6B-1:703-712
  3. Ootsuka, S., Fujii, T., Goto, H., Okajima, R. and Takemoto, K. (1993) Preparation of 5-amino-2-chloro-4-fluorophenol, JP 05286912
  4. Pallett, K. E. (1997) Herbicide target sites recent trends and new challenges, In Proceeding of Brighton Crop Protection Conference-Weeds, pp. 575-578
  5. Park, K. Y. (2002) Comparison of QSAR and the methods on the Protoxinhibition of 1-(4-chloro-2-fluoro-5-propargyloxyphenyl)- 3-alkylthiourea derivatives. A Thesis for the Degree of Master in Agricultural Science, Chung -nam National University
  6. SAS (2002) Statistic & Analysis Software on CD-ROM (Ver. 9.1), SAS Institute Inc., Cary, NC. 27513, USA
  7. Sung, N. D., T. Y. Yoon and H. S. Chung (2005a) Molecular holographic quantitative structure-activity relationship (HQSAR) for the Fungicidal Activities of New Novel 2-Alkoxyphenyl- 3-phenylthioisoindolin-1-one Derivatives. Korean J. Pesticide Sci., 9:146-152
  8. Sung, N. D., K. S., Jung, H. S. Jung and Y. H. Chung (2006a) Comparative molecular similarity indices analysis (CoMSIA) on the herbicidal activities of new 5-benzofuryl-2-[1- (alkyloxyimino)alkyl]-3-hydroxycyclohex-2-en-1-one. Korean J. Pesticide Sci.: 10, 1-7
  9. Verloop, A., W. Hoogenstrraten and J. Tipker (1976) Drug Design. In Development and application of new steric substituent parameters in drug design (Ariens, E. J. ed.), Academic Press, New York. Vol. 7, pp. 165-207
  10. Matsumoto, H. (2000) Herbicide modes of action, recent progress and new challenges. In Proceeding of The 17th Asian-Pacific Weed Science Society Conference, pp. 39-44
  11. Sung, N. D., E. K. Kang, J. H. Song and H. S. Jung (2005c) Comparative molecular field analysis (CoMFA) models and their selectivity for the herbicidal activities of new novel 2-(4-chloro-5-(2-chloroallyloxy)-2-fluoro- phenyl)-3-thioalkoxy- 2,3,4,5,6,7-hexahydroisoindol-1-ones. J. Korean Soc. Appl. Biol. Chem., 48:394-399
  12. Watanabe, N., F. S. Che, M. Iwano, S. Takayama, T. Nakano, S. Yoshida and I. Akira (1998) Molecular characterization of photomixotrophic tobacco cells resistant to proto porphyrinogen oxidase-inhibiting herbicides 1, Plant Physiol. 118:751-758
  13. Jeon, D. J., Y. M. Kim, K. Y. Park, H. R. Kim,, J. H. Song, I. T. Hwang and E. K. Ryu (2001) Synthesis and herbicidal activities of 2-(5-propargyloxy-phenyl)-4,5,6,7-tetrahydro- 2H-indazole and their related derivatives. Korean J. Pesticide Sci. 5:68-71
  14. Hansch, C. and T. Klein (1971) In Drug Design. Academic: New York, Vol. 1, pp. 333
  15. Ichiki, T. (1986) Process for producing tetrahydrophthalimides, US 4563535
  16. Hirai, K. (1990) Process for preparing 2-chloro-4-fluorophenol, EP 0417720
  17. Duke, S. O. (1997) Overview of protoporphyrinogen oxidase inhibiting herbicides, In Brighton Crop Protection Conference- Weeds, pp. 83-93
  18. Scalla R., M. Matringe, J. M. Camadro and P. Labbe (1990) Recent advances in the mode of action of diphenyl ether and related herbicides, Z Naturforsch., 45c: 503-511
  19. Boger, P. and K. Wakabayashi (1991) In Peroxidizing Herbicides, Springer. pp. 44-48
  20. Sato R., E. Nagano, H. Oshio and K. Kamoshita (1987) Diphenylether-like physiological and biochemical action of S23142, a novel N-phenylimide herbicide, Pestic Biochem Physiol, 8:194-200
  21. Shorter, J. (1982) The separation of Polar, Steric, and Resonance Effects. In Correlation Analysis of Organic Reactivity. Ch. 4. Research Studies Press, A Division of John Wiely & Sons Ltd. Singapore. pp. 73-122
  22. Sung, N. D., E. K., Kang, J. H. Song and H. S. Jung (2005b) Holographic quantitatives structure-activity relationship (HQSAR) analysis for the herbicidal activities of new novel 2-(4- chloro-5-(2-chloroallyloxy)-2-fluoro-phenyl)-3-thioalkoxy- 2,3,4,5,6,7-hexahydroisoindol-1-one derivatives. Korean J. Pesticide Sci., 9:199-204
  23. Cramer, R. D., III, K. M., Sander (1979) Application of Quantitative Structure-Activity Relationships in the Development of the Antiallergic Pyraneamines, J. Med. Chem., 22:714-725