DOI QR코드

DOI QR Code

High-Accuracy Digital-to-Analog Actuators Using Load Springs Compensating Fabrication Errors

제조공정 오차보상용 보정 탄성체를 이용한고정도 디지털-아날로그 구동기

  • 한원 (한국과학기술원 바이오 및 뇌공학과, 디지털나노구동연구단) ;
  • 이원철 (한국과학기술원 바이오 및 뇌공학과, 디지털나노구동연구단) ;
  • 조영호 (한국과학기술원 바이오및뇌공학과 및 기계공학과, 디지털나노구동연구단)
  • Published : 2008.10.01

Abstract

We present a high-accuracy digital-to-analog (DA) actuator using a load spring, specially designed to compensate the output displacement errors caused by fabrication errors. The compensated linear DA actuator is capable to change the slope of input-output modulation line in order to compensate fabrication errors. We design, fabricate, and characterize three different prototypes: one uncompensated design and two compensated designs respectively for a specific value and for a given range of fabrication error. The compensated linear DA actuators show the output displacement errors of $-0.20{\pm}0.23{\mu}m\;and\;-0.13{\pm}0.18{\mu}m$, respectively, reduced by 64.3% and 76.8% of the output displacement error, $0.56{\pm}0.20{\mu}m$, produced by the conventional uncompensated linear DA actuator. We experimentally verify the fabrication error compensation capability of the present compensated linear DA actuators, thus demonstrating high-accuracy actuation performance immune to fabrication errors.

Keywords

Digital-to-Analog Actuator;Fabrication Error Compensation;High-Accuracy Actuation

References

  1. Li, J., Liu, A.Q., Zhong, W. D., Zhang, Q. X. and Lu, C., 2004, "MEMS Switch Based Serial Reconfigurable OADM," Optics Communications, Vol. 230, pp. 81-89 https://doi.org/10.1016/j.optcom.2003.10.060
  2. Imamura, T., Katayama, M., Ikegawa, Y., Ohwe, T., Koishi, R. and Koshikawa, T., 1998, "MEMS-Based Integrated Head/Actuator/Slider for Hard Disk Drives," IEEE/ASME Transactions on Mechatronics, Vol. 3, pp. 166-174 https://doi.org/10.1109/3516.712112
  3. Wu, M. C., 1997, "Micromachining for Optical and Optoelectronic Systems," Proceedings of the IEEE, Vol. 85, pp. 1833-1856 https://doi.org/10.1109/5.649660
  4. Koganezawa, S., Unematsu, Y. and Yamada, T., 1999, "Dual-Stage Actuator System for Magnetic Disk Drives Using a Shear Mode Piezoelectric Microactuator," IEEE Transactions on Magnetics, Vol. 35, pp. 988-992 https://doi.org/10.1109/20.753821
  5. Yeh, R., Conant, R. A. and Pister, K. S., 1999, "Mechanical Digital-to-Analog Converters," in Proc. 10th Int. Conf. Solid-State Sensors and Actuators (Transducers'99), pp. 198-1001
  6. Hong, Y. S., Lee, J. H. and Kim, S. H., 2000, "A Laterally Driven Symmetric Micro-Resonator for Gyroscopic Applications," J. Micromech. Microeng., Vol. 10, pp. 452-458 https://doi.org/10.1088/0960-1317/10/3/322
  7. Lee, W. C., Jin, Y.-H. and Cho, Y.-H., 2002, "Nonliearly Modulated Digital Microactuators for Nano-Precisioin Digital Motion Generation," in Proc. 15th Int. Conf. IEEE MEMS, pp. 594-597
  8. Wittwer, J. W., Baker, M. S. and Howell, L. L., 2006, "Robust Design and Model Validation of Nonlinear Compliant Micromechanisms," J. Microelectromech. Syst., Vol. 15, pp. 33-41 https://doi.org/10.1109/JMEMS.2005.859190
  9. Grade, J. D., Jerman, H. and Kenny, T. W., 2003, “Design of Large Deflection Electrostatic Actuators,” J. Microelectromech. Syst., Vol. 12, pp. 335-343 https://doi.org/10.1109/JMEMS.2003.811750
  10. Jerman, J. H., Grade, J. D. and Drake, J. D., 1999, "Electrostatic Microactuator and Method for Use Thereof," U. S. Patent 5998906
  11. Ogata, K., 1998, System Dynamics. New Jersey: Prentice Hall, pp. 373-374
  12. Hagelin, P. M. and Solgaard, O., 1999, "Optical Raster-Scanning Displays Based on Surface-Micromachined Polysilicon Mirrors," IEEE J. Quantum Electron., Vol. 5, pp. 67-74 https://doi.org/10.1109/2944.748107
  13. Toshiyoshi, H., Kobayashi, D., Mita, M., Hashiguchi, G., Fujita, H., Endo, J. and Wada, Y., 2000, "Microelectromechanical Digital-to-Analog Converters of Displacement for Step Motion Actuators," J. Microelectromech. Syst., Vol. 9, pp. 218-225 https://doi.org/10.1109/84.846702
  14. Liu, R., Paden, B. and Turner, K., 2002, "MEMS Resonators that are Robust to Process-Induced Feature Width Variations," J. Microelectromech. Syst., Vol. 11, pp. 505-511 https://doi.org/10.1109/84.982862