Characteristics of TiAlN Film on Different Buffer Layer by D.C Magnetron Sputter

D.C magnetron sputter법으로 증착된 TiAlN의 중간층에 따른 특성연구

  • Kim, Myoung-Ho (Department of Material Science & Engineering, Chonnam National University) ;
  • Lee, Doh-Jae (Department of Material Science & Engineering, Chonnam National University) ;
  • Lee, Kwang-Min (Department of Material Science & Engineering, Chonnam National University) ;
  • Kim, Woon-Sub (Department of Material Science & Engineering, Chonnam National University) ;
  • Kim, Min-Ki (Sunkyung Heavy Industrial CO.) ;
  • Park, Burm-Su (A. G. Optics Co.) ;
  • Yang, Kook-Hyun (A. G. Optics Co.)
  • 김명호 (전남대학교 공과대학 신소재공학부) ;
  • 이도재 (전남대학교 공과대학 신소재공학부) ;
  • 이광민 (전남대학교 공과대학 신소재공학부) ;
  • 김운섭 (전남대학교 공과대학 신소재공학부) ;
  • 김민기 (선경중공업(주)) ;
  • 박범수 ((주)에이지광학) ;
  • 양국현 ((주)에이지광학)
  • Published : 2008.10.27


TiAlN films were deposited on WC-5Co substrates with different buffer layers by D.C. magnetron sputtering. The films were evaluated by microstructural observations and measuring of preferred orientation, hardness value, and adhesion force. As a process variable, various buffer layers were used such as TiAlN single layer, TiAlN/TiAl, TiAlN/TiN and TiAlN/CrN. TiAlN coating layer showed columnar structures which grew up at a right angle to the substrates. The thickness of the TiAlN coating layer was about $1.8{\mu}m$, which was formed for 200 minutes at $300^{\circ}$. XRD analysis showed that the preferred orientation of TiAlN layer with TiN buffer layer was (111) and (200), and the specimens of TiAlN/TiAl, TiAlN/CrN, TiAlN single layer have preferred orientation of (111), respectively. TiAlN single layer and TiAlN/TiAl showed good adhesion properties, showing an over 80N adhesion force, while TiAlN/TiN film showed approximately 13N and the TiAlN/CrN was the worst case, in which the layer was destroyed because of high internal residual stress. The value of micro vickers hardness of the TiAlN single layer, TiAlN/TiAl and TiAlN/TiN layers were 2711, 2548 and 2461 Hv, respectively.


  1. S. Y. Yoon, J. K. Kim and K. H. Kim, Surf. Coat. Technol., 161, 237 (2002)
  2. L. Chollet and A. J. Perry, Thin Solid Films, 123, 223 (1985)
  3. C. Rebholz, A. Leyland and A. Matthews, Thin Solid Films, 343, 242 (1999)
  4. J. A. Sue and H. H. Troue, Surf. Coat. Technol., 43, 709 (1990)
  5. R. Goller, P. Torri, M. A. Baker, R. Gilmore and W. Gissler, Surf. Coat. Technol., 120, 453 (1999)
  6. H. P. Lorenz, Diamond and Related Mater., 4, 1088(1995)
  7. E. W. Niu, L. Li, G. H. Lv, H. Chen, X. Z. Li, X. Z. Yang and S. Z. Yang, Appl. Sur. Sci., 254, 3909 (2008)
  8. Ph. V. Kiryukhantsev-Korneev, D. V. Shtansky, M. I. Petrzhik, E. A. Levashov and B. N. Mavrin, Surf. Coat. Technol., 201, 6143 (2007)
  9. J. Morales-Hernandez, L. Garcia-Gonzalez, J. Munoz-Saldana and F. J. Espinoza-Beltran, Vacuum, 76, 161 (2004)
  10. J. S. Yoon, H. J. Kim, J. G. Han and Keon Song, J. of the Korean Inst. of Met.& Mater., 34, 192 (1996)
  11. Q. Yang, D. Y. Seo, L. R. Zhao and X. T. Zeng, Surf. Coat. Technol., 188, 168 (2004)
  12. F. Quesada, A. Marino and E. Restrepo, Surf. Coat. Technol., 201, 2925 (2006)
  13. H. C. Barshilia, K. S. Rajam, A. Jain, K. Gopinadlhan and S. Chaudhary, Thin Solid Films, 503, 158 (2006)
  14. F. Hollstein, R. Wiedemann and J. Scholz, Surf. coat. Technol., 162, 261 (2003)
  15. L. Hultman, G. Hakanson, U. Wahlstrom, J. E. Sundgren, I. Petrov, F. Adibi and J. E. Green, Thin Solid Films, 205, 153 (1993)
  16. J. E. Sundgren, Thin Solid Films, 128, 21 (1985)
  17. J. G. Kim and W. S. Hwang, Corro. Sci. and Technol., 5, 52 (2006)
  18. G. S. Kim, B. S. Kim and S. Y. Lee, J. Kor. Inst. Surf. Eng., 38, 207-211 (2005)
  19. S. Liscano, L. Gil, O. A. Leon, M. Cruz and M. H. Staia, Surf. Coat. Technol., 201, 4419 (2006)