# A GLOBAL BEHAVIOR OF THE POSITIVE SOLUTIONS OF xn+1=βxn+ xn-2 ⁄ A+Bxn + xn-2

• Published : 2008.01.31
• 53 4

In this paper we prove that every positive solution of the third order rational difference equation $$x_{n+1}\;=\;\frac{{\beta}x_n\;+\;x_{n-2}}{A\;+\;Bx_n\;+\;x_{n-2}} converges to the positive equilibrium point$$\bar{x}\;=\;\frac{{\beta}\;+\;1\;-\;A}{B\;+\;1}$, where$0\;<\;{\beta}\;{\leq}\;B$,$1\;<\;A\;<\;{\beta}\;+\;1$#### Keywords difference equations;equilibrium point #### File #### References 1. E. Camouzis, Global analysis of solutions of$x_{n+1} = \frac{\beta{x_{n}}+\delta{x_{n-2}}}{A+B{x_{n}+C{x_{n-1}}\$, J. Math. Anal. Appl. 316 (2006), 616-627 https://doi.org/10.1016/j.jmaa.2005.05.008
2. M. R. S. Kulenovic and G. Ladas, Dynamics of Second Order Rational Difference Equation, with Open Problems and Conjectures, Chapman and Hall/CRC, 2002
3. R. D. Nussbaum, Global stability, two conjectures and maple, Nonlinear Anal. 66 (2007), 1064-1090 https://doi.org/10.1016/j.na.2006.01.005

#### Cited by

1. RATIONAL DIFFERENCE EQUATIONS WITH POSITIVE EQUILIBRIUM POINT vol.47, pp.3, 2010, https://doi.org/10.4134/BKMS.2010.47.3.645
2. On the Difference equation xn+1=axn−l+bxn−k+cxn−sdxn−s−e vol.40, pp.3, 2017, https://doi.org/10.1002/mma.3980
3. Evaluation of modeling techniques for a type III hydrogen pressure vessel (70 MPa) made of an aluminum liner and a thick carbon/epoxy composite for fuel cell vehicles vol.37, pp.3, 2012, https://doi.org/10.1016/j.ijhydene.2011.11.001