DOI QR코드

DOI QR Code

ON THE EXISTENCE OF SOME TYPES OF LP-SASAKIAN MANIFOLDS

Shaikh, Absos A.;Baishya, Kanak K.;Eyasmin, Sabina

  • 발행 : 2008.01.31

초록

The object of the present paper is to provide the existence of LP-Sasakian manifolds with $\eta$-recurrent, $\eta$-parallel, $\phi$-recurrent, $\phi$-parallel Ricci tensor with several non-trivial examples. Also generalized Ricci recurrent LP-Sasakian manifolds are studied with the existence of various examples.

키워드

LP-Sasakian manifolds;Ricci generalized LP-Sasakian manifolds$\eta$-parallel Ricci tensor$\phi$-parallel Ricci tensor$\phi$-recurrent Ricci tensor$\eta$-recurrent Ricci tensor

참고문헌

  1. U. C. De, K. Matsumoto, and A. A. Shaikh, On Lorentzian para-Sasakian manifolds, Rendiconti del Seminario Mat. de Messina, al n. 3 (1999), 149-156
  2. M. Kon, Invariant submanifolds in Sasakian manifolds, Mathematische Annalen, 219 (1976), 277-290 https://doi.org/10.1007/BF01354288
  3. K. Matsumoto, On Lorentzian almost paracontact manifolds, Bull. of Yamagata Univ. Nat. Sci. 12 (1989), 151-156
  4. I. Mihai, U. C. De, and A. A. Shaikh, On Lorentzian para-Sasakian manifolds, Korean J. Math. Sciences 6 (1999), 1-13
  5. I. Mihai and R. Rosca, On Lorentzian P-Sasakian manifold, Classical Analysis, World Scientific Publi., Singapore (1992), 155-169
  6. A. A. Shaikh and S. Biswas, On LP-Sasakian manifolds, Bull. Malaysian Math. Sci. Soc. 27 (2004), 17-26
  7. U. C. De, N. Guha, and D. Kamilya, On generalized Ricci recurrent manifolds, Tensor, N. S. 56 (1995), 312-317
  8. A. A. Shaikh and K. K. Baishya, Some results on LP-Sasakian manifolds, Bull. Math. Soc. Sci. Math. Rommanie Tome 49 (97) (2006), no. 2, 197-205

피인용 문헌

  1. On generalized ϕ-recurrent LP-Sasakian Manifolds vol.23, pp.1, 2015, https://doi.org/10.4134/CKMS.2008.23.1.095
  2. ON M-Projectively Flat LP-Sasakian Manifolds vol.65, pp.11, 2014, https://doi.org/10.4134/CKMS.2008.23.1.095