Integrated Genetic Algorithm with Direct Search for Optimum Design of RC Frames

직접탐색을 이용한 유전자 알고리즘에 의한 RC 프레임의 최적설계

  • 곽효경 (한국과학기술원 건설 및 환경공학과) ;
  • 김지은 (스마트 사회기반시설 연구센터(SISTeC))
  • Published : 2008.02.28

Abstract

An improved optimum design method for reinforced concrete frames using integrated genetic algorithm(GA) with direct search method is presented. First, various sets of initially assumed sections are generated using GA, and then, for each resultant design member force condition optimum solutions are selected by regression analysis and direct search within pre-determined design section database. In advance, global optimum solutions are selected from accumulated results through several generations. Proposed algorithm makes up for the weak point in standard genetic algorithm(GA), that is, low efficiency in convergence causing the deterioration of quality of final solutions and shows fast convergence together with improved results. Moreover, for the purpose of elevating economic efficiency, optimum design based on the nonlinear structural analysis is performed and therefore makes all members resist against given loading condition with the nearest resisting capacity. The investigation for the effectiveness of the introduced design procedure is conducted through correlation study for example structures.

References

  1. 양영순, 김기화 (1995) 실수형 Genetic Algorithm에 의한 최적 설계, 한국전산구조공학회 논문집, 8(2), pp.123-132
  2. Deb, K. (2000) An efficient constraint handling method for genetic algorithms. Computer methods in applied mechanics and engineering, 186, pp. 311-338 https://doi.org/10.1016/S0045-7825(99)00389-8
  3. Nilson, A.H., Darwin, D., Dolan, C. W. (2003) Design of Concrete Structures, Mc Graw Hill
  4. Sahab, M.G., Ashour, A.F., Toropov, V.V. (2005) A Hybrid Genetic Algorithm for Reinforced Concrete Flat Slab Buildings. Computers and Structures, 83, pp.551-559 https://doi.org/10.1016/j.compstruc.2004.10.013
  5. Salajegheh, E., Gholizadeh, S. (2005) Optimum Design of Structures by an Improved Genetic Algorithm Using Neural Networks. Advances in Engineering Software, 36, pp.757-767 https://doi.org/10.1016/j.advengsoft.2005.03.022
  6. 한국엔지니어링진흥협회 (2004) 철근콘크리트 구조물의 한계 상태 설계법, 과학기술부
  7. Belegundu, A.D., Chandrupatla, T.R. (1999) Optimization Concepts and Applications in Engineering, Prentice Hall
  8. Yang, Z., Huang, C., Qu, J., Wang, Y.J., Guo, C. (2004) Inversing Reinforced Concrete Beams Flexural Load Rating Using ANN and GA Hybrid Algorithm. ISNN 2004, LNCS 3174, pp.779-785, Springer
  9. The European Standard EN 1992-1-1 (2004) Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings. BSi British Standards
  10. Govindaraj, V., Ramasmy, J.V. (2005) Optimum Detailed Design of Reinforced Concrete Continuous Beams Using Genetic Algorithms, Computers and Structures, 84(1), pp.34-48 https://doi.org/10.1016/j.compstruc.2005.09.001
  11. Chau, K.W., Albermani, F., Hendtlass, T., Ali, M. (2002) Genetic Algorithms for Design of Liquid Retaining Structures, IEA/AIE 2002, LNAI 2385, pp.119-128, Springer
  12. 한국콘크리트학회.대한건축학회 (1999) 콘크리트구조설계 기준, 건설교통부
  13. 김남희, 장승필, 이승철 (2001) 다단계 신경망을 이용한 초기 구조설계 시스템 개발, 한국전산구조공학회 논문집, 15(2), pp.261-270
  14. Holland, J.H. (1975) Adaptation in Natural and Artificial Systems, Ann Arbor, Michigan, The University of Michigan Press
  15. COMITE EURO-INTERNATIONAL DU BETON (1990) CEB-FIP MODEL CODE 1990. Thomas Telford
  16. Beyer, H.G. (2001) The Theory of Evolution Strategies, Springer
  17. Camp, C.V., Pezeshk, S., Hansson, H. (2002) Flexural Design of Reinforced Concrete Frames Using a Genetic Algorithm, Journal of Structural Engineering, ASCE, 129(1), pp.105-115
  18. Hrstka, O., Kucerova, A., Leps, M., Zeman, J. (2003) A competitive comparison of different types of evolutionary algorithms. Computers and Structures, 81, pp.1979-1990 https://doi.org/10.1016/S0045-7949(03)00217-7
  19. Srinivas, V., Ramanjaneyulu, K. (2006) An integrated approach for optimum design of bridge decks using genetic algorithms and artificial neural networks. Advances in Engineering Software, 38 (7), pp.475-487 https://doi.org/10.1016/j.advengsoft.2006.09.016
  20. Andre, J., Siarry, P., Dognon, T. (2001) An improvement of the standard genetic algorithm fighting premature convergence in continuous optimization. Advances in Engineering Software, 32, pp. 49-60 https://doi.org/10.1016/S0965-9978(00)00070-3
  21. Ferreira, C.C., Barros, M.H.F.M., Barros, A.F.M. (2003) Optimal Design of Reinforced Concrete T-Sections in Bending, Engineering Structures, 25(7), pp.951-964 https://doi.org/10.1016/S0141-0296(03)00039-7
  22. Michalewicz, Z. (1999) Genetic Algorithms + Data Structures = Evolution Programs, 3rd Revised and Extended Edition, Springer
  23. Lee, C., Ahn, J. (2003) Flexural Design of Reinforced Concrete Frames by Genetic Algorithm, Journal of Structural Engineering, ASCE, 129(6), pp.762-774 https://doi.org/10.1061/(ASCE)0733-9445(2003)129:6(762)
  24. 곽효경, 김지은 (2007) 데이터베이스에 기반한 RC 평면 프레임 구조물의 최적설계, 한국전산구조공학회 논문집, 20(2), pp.165-179
  25. 문병로 (2003), 유전알고리즘, 두양사