A Micromechanics based Elastic Constitutive Model for Particle-Reinforced Composites Containing Weakened Interfaces and Microcracks

계면손상과 미세균열을 고려한 입자강화 복합재료의 미세역학 탄성구성모델

  • 이행기 (한국과학기술원 건설 및 환경공학과) ;
  • 표석훈 (한국과학기술원 건설 및 환경공학과) ;
  • 김형기 (한국과학기술원 건설 및 환경공학과)
  • Published : 2008.02.28

Abstract

A constitutive model based on a combination of a micromechanics-based weakened interface elastic model (Lee and Pyo, 2007) and a crack nucleation model (Karihaloo and Fu, 1989) is proposed to predict the effective elastic behavior of particle-reinforced composites. The model specifically considers imperfect interfaces in particles and microcracks in the matrix. To exercise the proposed constitutive model and to investigate the influence of model parameters on the behavior of the composites, numerical simulations on uniaxial tension tests were conducted. Furthermore, the present prediction is compared with available experimental data in the literature to verify the accuracy of the proposed constitutive model.

References

  1. 김태우, 박상환 (2001) 세라믹/금속기지 복합재료의 특성예측을 위한 미시역학적 유한요소해석, 한국세라믹학회지, 38 (6), pp.575-581
  2. 진민철, 염영진, 주영우 (2002) 계면이 분리된 복합재료의 기계적 성질 연구, 울산대학교 공학연구논문집, 33(1), pp. 51-67
  3. Lamon, J. (2001) A micromechanics-based approach to the mechanical behavior of brittle-matrix composites, Composites Science and Technology, 61(15), pp.2259-2272 https://doi.org/10.1016/S0266-3538(01)00120-8
  4. Zhou, C. W., Yang, W., Fang, D. N. (2004) Mesofracture of metal matrix composites reinforced by particles of large volume fraction, Theoretical and Applied Fracture Mechanics, 41, pp.311-326 https://doi.org/10.1016/j.tafmec.2003.11.023
  5. 장병국, 우상국 (1999) Microcracking에 의한 복합재료의 고인성화 특성, 한국재료학회지, 9(2), pp.132-138
  6. 김동섭 (1996) 복합재료의 기술동향, 농업기술정보원 보고서
  7. Ju, J. W., Chen, T. M. (1994) Micromechanics and effective elastoplastic behavior of two-phase metal matrix composites, Journal of Engineering Materials and Technology, 116, pp.310-318 https://doi.org/10.1115/1.2904293
  8. Carman, G. P., Reifsnider, K. L. (1992) Micromechanics of short-fiber composites, Composites Science and Technology, 43(2), pp.137-146 https://doi.org/10.1016/0266-3538(92)90004-M
  9. Weibull, W. (1951) A statistical distribution function of wide applicability, Journal of Applied Mechanics, 18, pp.293-297
  10. Cho, J., Joshi, M. S., Sun, C. T. (2006) Effect of inclusion size on mechanical properties of polymeric composites with microand nano particles, Composites Science and Technology, 66, pp.1941-1952 https://doi.org/10.1016/j.compscitech.2005.12.028
  11. Lee, H. K., Pyo, S. H. (2007) Micromechanics-based elastic damage modeling of particulate composites with weakened interfaces, International Journal of Solids and Structures, 44, pp.8390-8406 https://doi.org/10.1016/j.ijsolstr.2007.06.019
  12. Caiazzo, A. A., Costanzo, F. (2000) On the constitutive relations of materials with evolving microstructure due to microcracking, Journal of Reinforced Plastics and Composites, 19(2), pp.152-163 https://doi.org/10.1106/DAM0-VTAY-8PVA-G0B1
  13. Karihaloo, B. L., Fu, D. (1989) A damage-based constitutive law for plain concrete in tension, European Journal of Mechanics, A-Solids, 8, pp. 373-384
  14. Sun, L. Z., Ju, J. W. (2004) Elastoplastic modeling of metal matrix composites containing randomly located and oriented spheroidal particles, Journal of Applied Mechanics, Transactions of ASME, 71, pp.774-785 https://doi.org/10.1115/1.1794699
  15. N., Guo, Y. L. (2001) Correlation between tensile and indentation behavior of particle-reinforced metal matrix composites: an experimental and numerical study, Acta Materialia, 49, pp.3219-3229 https://doi.org/10.1016/S1359-6454(01)00226-9