DOI QR코드

DOI QR Code

OSCILLATION THEOREMS FOR PERTURBED DIFFERENTIAL EQUATIONS OF SECOND ORDER

  • Published : 2008.05.31

Abstract

By means of a Riccati transform and averaging technique some oscillation criteria are established for perturbed nonlinear differential equations of second order $(P_1)\;(p(t)x'(t))'+q(t)|x({\phi}(t)|^{{\alpha}+1}sgnx({\phi}(t))+g(t,\;x(t))=0$ $(P_2)$ and $(P_3)$ satisfying the condition (H). A comparison theorem and examples are given.

References

  1. B. Ayanlar and A. Tiryaki, Oscillation theorems for nonlinear second order differential equations with damping, Acta Math. Hungar. 89 (2000), no. 1-2, 1-13 https://doi.org/10.1023/A:1026716923088
  2. J. W. Baker, Oscillation theorems for a second order damped nonlinear differential equation, SIAM J. Appl. Math. 25 (1973), 37-40 https://doi.org/10.1137/0125007
  3. L. E. Bobisud, Oscillation of solutions of damped nonlinear equations, SIAM J. Appl. Math. 19 (1970), 601-606 https://doi.org/10.1137/0119059
  4. A. Elbert and T. Kusano, Oscillation and nonoscillation theorems for a class of second order quasilinear differential equations, Acta Math. Hungar. 56 (1990), no. 3-4, 325-336 https://doi.org/10.1007/BF01903849
  5. H. E. Gollwitzer, Nonoscillation theorems for a nonlinear differential equation, Proc. Amer. Math. Soc. 26 (1970), 78-84
  6. G. H. Hardy, J. E. Litlewood, and G. Polya, Inequalities, Cambridge University Press, Cambridge, 1988
  7. M. K. Kong and J. S. W. Wong, Nonoscillation theorems for a second order sublinear ordinary differential equation, Proc. Amer. Math. Soc. 87 (1983), no. 3, 467-474
  8. A. H. Nasr, Sufficient conditions for the oscillation of forced super-linear second order differential equations with oscillatory potential, Proc. Amer. Math. Soc. 126 (1998), no. 1, 123-125
  9. Y. G. Sun, A Note on Nasr and Wong papers, J. Math. Anal. Appl. 286 (2003), no. 1, 363-367 https://doi.org/10.1016/S0022-247X(03)00460-8
  10. Y. G. Sun, New Kamenev-type oscillation criteria for second-order nonlinear differential equations with damping, J. Math. Anal. Appl. 291 (2004), no. 1, 341-351 https://doi.org/10.1016/j.jmaa.2003.11.008
  11. J. S. W. Wong, Oscillation criteria for second order nonlinear differential equations involving general means, J. Math. Anal. Appl. 247 (2000), no. 2, 489-505 https://doi.org/10.1006/jmaa.2000.6855
  12. J. S. W. Wong, On Kamenev-type oscillation theorems for second-order differential equations with damping, J. Math. Anal. Appl. 258 (2001), no. 1, 244-257 https://doi.org/10.1006/jmaa.2000.7376
  13. C. C. Yeh, Oscillation theorems for nonlinear second order differential equations with damped term, Proc. Amer. Math. Soc. 84 (1982), no. 3, 397-402
  14. M. Cecchi, M. Marini, and G. Villari, Comparison results for oscillation of nonlinear differential equations, NoDEA Nonlinear Differential Equations Appl. 6 (1999), no. 2, 173-190 https://doi.org/10.1007/s000300050071
  15. S. R. Grace, Oscillation theorems for second order nonlinear differential equations with damping, Math. Nachr. 141 (1989), 117-127 https://doi.org/10.1002/mana.19891410114
  16. Ch. G. Philos, Oscillation theorems for linear differential equations of second order, Arch. Math. (Basel) 53 (1989), no. 5, 482-492 https://doi.org/10.1007/BF01324723