DOI QR코드

DOI QR Code

SASAKIAN MANIFOLDS WITH QUASI-CONFORMAL CURVATURE TENSOR

  • De, Uday Chand (Department of Mathematics University of Kalyani) ;
  • Jun, Jae-Bok (Department of Mathematics College of Natural Science Kook-Min University) ;
  • Gazi, Abul Kalam (Department of Mathematics University of Kalyani)
  • Published : 2008.05.31

Abstract

The object of the paper is to study a Sasakian manifold with quasi-conformal curvature tensor.

References

  1. K. Amur and Y. B. Maralabhavi, On quasi-conformally flat spaces, Tensor (N.S.) 31 (1977), no. 2, 194-198
  2. D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Vol. 509. Springer-Verlag, Berlin-New York, 1976
  3. M. C. Chaki and M. Tarafdar, On a type of Sasakian manifold, Soochow J. Math. 16 (1990), no. 1, 23-28
  4. L. P. Eisenhart, Riemannian Geometry, Princeton University Press, Princeton, N. J., 1949
  5. M. Okumura, Some remarks on space with a certain contact structure, Tohoku Math. J. (2) 14 (1962), 135-145 https://doi.org/10.2748/tmj/1178244168
  6. S. Sasaki, Lecture Note on Almost Contact Manifolds, Part I, Tohoku University, 1965
  7. S. Sasaki, Lecture Note on Almost Contact Manifolds, Part II, Tohoku University, 1967
  8. Z. I. Szabo, Structure theorems on Riemannian spaces satisfying R(X, Y)R = 0. I. The local version, J. Differential Geom. 17 (1982), no. 4, 531-582 https://doi.org/10.4310/jdg/1214437486
  9. K. Yano, Integral Formulas in Riemannian Geometry, Pure and Applied Mathematics, No. 1 Marcel Dekker, Inc., New York, 1970
  10. K. Yano and S. Sawaki, Riemannian manifolds admitting a conformal transformation group, J. Differential Geometry 2 (1968), 161-184 https://doi.org/10.4310/jdg/1214428253
  11. K. Yano and M. Kon, Structures on Manifolds, Series in Pure Mathematics, 3. World Scientific Publishing Co., Singapore, 1984