DOI QR코드

DOI QR Code

LINEAR OPERATORS THAT PRESERVE PERIMETERS OF BOOLEAN MATRICES

  • Published : 2008.05.31

Abstract

For a Boolean rank 1 matrix $A=ab^t$, we define the perimeter of A as the number of nonzero entries in both a and b. The perimeter of an $m{\times}n$ Boolean matrix A is the minimum of the perimeters of the rank-1 decompositions of A. In this article we characterize the linear operators that preserve the perimeters of Boolean matrices.

Keywords

Boolean linear operator;perimeter;(U,V)-operator;term rank

References

  1. L. B. Beasley and N. J. Pullman, Boolean-rank-preserving operators and Boolean-rank-1 spaces, Linear Algebra Appl. 59 (1984), 55-77 https://doi.org/10.1016/0024-3795(84)90158-7
  2. L. B. Beasley and N. J. Pullman, Term-rank, permanent, and rook-polynomial preservers, Linear Algebra Appl. 90 (1987), 33-46 https://doi.org/10.1016/0024-3795(87)90302-8
  3. C.-K. Li and S. J. Pierce, Linear preserver problems, Amer. Math. Monthly 108 (2001), no. 7, 591-605 https://doi.org/10.2307/2695268
  4. S. Pierce et. al., A survey of linear preserver problems, Linear and Multilinear Algebra 33 (1992), no. 1-2, 1-129 https://doi.org/10.1080/03081089208818176
  5. S.-Z. Song, L. B. Beasley, G.-S. Cheon, and Y.-B. Jun, Rank and perimeter preservers of Boolean rank-1 matrices, J. Korean Math. Soc. 41 (2004), no. 2, 397-406 https://doi.org/10.4134/JKMS.2004.41.2.397
  6. K. H. Kim, Boolean Matrix Theory and Applications, With a foreword by Gian-Carlo Rota. Monographs and Textbooks in Pure and Applied Mathematics, 70. Marcel Dekker, Inc., New York, 1982