DOI QR코드

DOI QR Code

EIGENVALUES ESTIMATES FOR THE DIRAC OPERATOR IN TERMS OF CODAZZI TENSORS

  • Friedrich, Thomas (Institut Fur Mathematik Humboldt-Universitat Zu Berlin) ;
  • Kim, Eui-Chul (Department of Mathematics Education Andong National University)
  • Published : 2008.05.31

Abstract

We prove a lower bound for the first eigenvalue of the Dirac operator on a compact Riemannian spin manifold depending on the scalar curvature as well as a chosen Codazzi tensor. The inequality generalizes the classical estimate from [2].

References

  1. A. Besse, Einstein Manifolds, Springer-Verlag, Berlin, 1987
  2. Th. Friedrich, Der erste Eigenwert des Dirac-Operators einer kompakten, Riemann-schen Mannigfaltigkeit nichtnegativer Skalarkrummung, Math. Nachr. 97 (1980), 117-146 https://doi.org/10.1002/mana.19800970111
  3. Th. Friedrich, Dirac Operators in Riemannian Geometry, Graduate Studies in Mathematics, 25. American Mathematical Society, Providence, RI, 2000
  4. Th. Friedrich and E. C. Kim, Some remarks on the Hijazi inequality and generalizations of the Killing equation for spinors, J. Geom. Phys. 37 (2001), no. 1-2, 1-14 https://doi.org/10.1016/S0393-0440(99)00049-2
  5. Th. Friedrich and K.-D. Kirchberg, Eigenvalue estimates of the Dirac operator depending on the Ricci tensor, Math. Ann. 324 (2002), no. 4, 799-816 https://doi.org/10.1007/s00208-002-0363-z
  6. E. C. Kim, A local existence theorem for the Einstein-Dirac equation, J. Geom. Phys. 44 (2002), no. 2-3, 376-405 https://doi.org/10.1016/S0393-0440(02)00133-X
  7. E. C. Kim, The $\hat{A}$-genus and symmetry of the Dirac spectrum on Riemannian product manifolds, Differential Geom. Appl. 25 (2007), no. 3, 309-321 https://doi.org/10.1016/j.difgeo.2006.11.009
  8. K.-D. Kirchberg, An estimation for the first eigenvalue of the Dirac operator on closed Kahler manifolds of positive scalar curvature, Ann. Global Anal. Geom. 4 (1986), no. 3, 291-325 https://doi.org/10.1007/BF00128050
  9. W. Kramer, U. Semmelmann, and G. Weingart, Eigenvalue estimates for the Dirac operator on quaternionic Kahler manifolds, Math. Z. 230 (1999), no. 4, 727-751 https://doi.org/10.1007/PL00004715

Cited by

  1. Estimates of small Dirac eigenvalues on 3-dimensional Sasakian manifolds vol.28, pp.6, 2010, https://doi.org/10.1016/j.difgeo.2010.07.001
  2. DIRAC EIGENVALUES ESTIMATES IN TERMS OF DIVERGENCEFREE SYMMETRIC TENSORS vol.46, pp.5, 2009, https://doi.org/10.4134/BKMS.2009.46.5.949
  3. SASAKIAN TWISTOR SPINORS AND THE FIRST DIRAC EIGENVALUE vol.53, pp.6, 2016, https://doi.org/10.4134/JKMS.j150524