Kwon, Ki-Woon

  • 발행 : 2008.01.31


Electrical impedance tomography (EIT) problem with anisotropic anomalous region is formulated in a few different ways using boundary integral operators. The Frechet derivative of Neumann-to-Dirichlet map is computed also by using boundary integral operators and the boundary of the anomalous region is approximated by trigonometric expansion with Lagrangian basis. The numerical reconstruction is done in case that the conductivity of the anomalous region is isotropic.


electrical impedance tomography;boundary integral operator;Neumann-to-Dirichlet map


  1. D. C. Barber and B. H. Brown, Applied potential tomography, J. Phys. E. Sci. Instrum. 17 (1984), 723-733
  2. M. Cheney, D. Isaacson, J. Newell, J. Goble, and S. Simske, Noser: An algorithm for solving the inverse conductivity problem, Internat. J. Imaging Systems and Technology 2 (1990), 66-75
  3. M. Cheney, D. Isaacson, and J. C. Newell, Electrical impedance tomography, SIAM Rev. 41 (1999), no. 1, 85-101
  4. R. R Coifman, A. McIntosh, and Y. Meyer, L'integrale de Cauchy definit un operateur borne sur $L^2$ pour les courbes lipschitziennes, Ann. of Math. (2) 116 (1982), no. 2, 361-387
  5. D. Colton, R. Kress, and P. Monk, Inverse scattering from an orthotropic medium, J. Comput. Appl. Math. 81 (1997), no. 2, 269-298
  6. D. C. Dobson, Convergence of a reconstruction method for the inverse conductivity problem, SIAM J. Appl. Math. 52 (1992), no. 2, 442-458
  7. K. Erhard and R. Potthast, The point source method for reconstructing an inclusion from boundary measurements in electrical impedance tomography and acoustic scattering, Inverse Problems 19 (2003), no. 5, 1139-1157
  8. L. Escauriaza and J. K. Seo, Regularity properties of solutions to transmission problems, Trans. Amer. Math. Soc. 338 (1993), no. 1, 405-430
  9. G. B. Folland, Introduction to partial differential equations, Second edition. Princeton University Press, Princeton, NJ, 1995
  10. D. G. Gisser, D. Isaacson, and J. C. Newell, Current topics in impedance imaging, Clin. Phys. Phyiol. Meas. 8 (1987), 39-46
  11. F. Hettlich and W. Rundell, The determination of a discontinuity in a conductivity from a single boundary measurement, Inverse Problems 14 (1998), no. 1, 67-82
  12. B. Hofmann, Approximation of the inverse electrical impedance tomography problem by an inverse transmission problem, Inverse Problems 14 (1998), no. 5, 1171-1187
  13. B. Hofmann, A denseness theorem with an application to a two-dimensional inverse potential refraction problem, SIAM J. Math. Anal. 30 (1999), no. 4, 896-911
  14. T. Hohage and C. Schormann, A Newton-type method for a transmission problem in inverse scattering, Inverse Problems 14 (1998), no. 5, 1207-1227
  15. M. Ikehata, Identification of the curve of discontinuity of the determinant of the anisotropic conductivity, J. Inverse Ill-Posed Probl. 8 (2000), no. 3, 273-285
  16. V. Isakov, On uniqueness of recovery of a discontinuous conductivity coefficient, Comm. Pure Appl. Math. 41 (1988), no. 7, 865-877
  17. H. Kang and J. K. Seo, The layer potential technique for the inverse conductivity problem, Inverse Problems 12 (1996), no. 3, 267-278
  18. H. Kang, J. K. Seo, and D. Sheen, Numerical identification of discontinuous conductivity coefficients, Inverse Problems 13 (1997), no. 1, 113-123
  19. H. Ki and D. Sheen, Numerical inversion of discontinuous conductivities, Inverse Problems 16 (2000), no. 1, 33-47
  20. R. Kohn and M. Vogelius, Identification of an unknown conductivity by means of measurements at the boundary, Inverse problems (New York, 1983), 113-123, SIAM-AMS Proc., 14, Amer. Math. Soc., Providence, RI, 1984
  21. R. V. Kohn and A. McKenney, Numerical implementation of a variational method for electrical impedance tomography, Inverse Problems 6 (1990), no. 3, 389-414
  22. R. Kress, Linear integral equations, Second edition. Applied Mathematical Sciences, 82. Springer-Verlag, New York, 1999
  23. K. Kwon, Identification of anisotropic anomalous region in inverse problems, Inverse Problems 20 (2004), no. 4, 1117-1136
  24. K. Kwon and D. Sheen, Anisotropic inverse conductivity and scattering problems, Inverse Problems 18 (2002), no. 3, 745-756
  25. M. Lassas and G. Uhlmann, On determining a Riemannian manifold from the Dirichletto-Neumann map, Ann. Sci. Ecole Norm. Sup. (4) 34 (2001), no. 5, 771-787
  26. J. M. Lee and G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math. 42 (1989), no. 8, 1097-1112
  27. W. R. B. Lionheart, Conformal uniqueness results in anisotropic electrical impedance imaging, Inverse Problems 13 (1997), no. 1, 125-134
  28. A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math. (2) 143 (1996), no. 1, 71-96
  29. R. Potthast, Frechet differentiability of boundary integral operators in inverse acoustic scattering, Inverse Problems 10 (1994), no. 2, 431-447
  30. F. Santosa and M. Vogelius, A backprojection algorithm for electrical impedance imaging, SIAM J. Appl. Math. 50 (1990), no. 1, 216-243
  31. E. Somersalo, M. Cheney, D. Isaacson, and E. L. Isaacson, Layer stripping: a direct numerical method for impedance imaging, Inverse Problems 7 (1991), no. 6, 899-926
  32. Z. Sun and G. Uhlmann, Anisotropic inverse problems in two dimensions, Inverse Problems 19 (2003), no. 5, 1001-1010
  33. J. Sylvester, An anisotropic inverse boundary value problem, Comm. Pure Appl. Math. 43 (1990), no. 2, 201-232
  34. J. Sylvester, A convergent layer stripping algorithm for the radially symmetric impedance tomography problem, Comm. Partial Differential Equations 17 (1992), no. 11-12, 1955-1994
  35. G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains, J. Funct. Anal. 59 (1984), no. 3, 572-611
  36. T. J. Yorkey, J. G. Webster, and W. J. Tompkins, Comparing reconstruction algorithms for electrical impedance tomography, IEEE Trans. Biomed. Engr. 34 (1987), 843-852
  37. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Second edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 224. Springer-Verlag, Berlin, 1983
  38. R. Kress, Newton's method for inverse obstacle scattering meets the method of least squares, Special section on imaging. Inverse Problems 19 (2003), no. 6, S91-S104
  39. E. J.Woo, J.Webster, and W. J. Tompkins, The improved Newton-Raphson method and its parallel implementation for static impedance imaging, In Proc. IEEE-EMBS Conf. Part 1, volume 5, pages 102-103, 1990

피인용 문헌

  1. 1. The method of fundamental solutions for the inverse conductivity problem vol.18, pp.4, 2010, doi:10.4134/JKMS.2008.45.1.097