DOI QR코드

DOI QR Code

Discovery of Behavior Sequence Pattern using Mining in Smart Home

스마트 홈에서 마이닝을 이용한 행동 순차 패턴 발견

  • 정경용 (상지대학교 컴퓨터정보공학부) ;
  • 김종훈 (인하대학교 컴퓨터정보공학부) ;
  • 강운구 (가천의과학대학교 의료공학부) ;
  • 임기욱 (선문대학교 컴퓨터정보학부) ;
  • 이정현 (인하대학교 컴퓨터정보공학부)
  • Published : 2008.09.28

Abstract

With the development of ubiquitous computing and the construction of infrastructure for one-to-one personalized services, the importance of context-aware services based on user's situation and environment is being spotlighted. The smart home technology connects real space and virtual space, and converts situations in reality into information in a virtual space, and provides user-oriented intelligent services using this information. In this paper, we proposed the discovery of the behavior sequence pattern using the mining in the smart home. We discovered the behavior sequence pattern by using mining to add time variation to the association rule between locations that occur in location transactions. We can predict the path or behavior of user according to the recognized time sequence and provide services accordingly. To evaluate the performance of behavior consequence pattern using mining, we conducted sample t-tests so as to verify usefulness. This evaluation found that the difference of satisfaction by service was statistically meaningful, and showed high satisfaction.

유비쿼터스 컴퓨팅의 발전에 따라 일대일 개인화 서비스를 위한 인프라스트럭처가 구축되면서, 사용자의 상황과 환경, 즉 상황인식 기반 서비스의 중요성이 부각되고 있다. 스마트 홈은 현실공간과 가상공간을 연결하여 가상공간에서 현실의 상황을 정보화하고 이를 활용하여 사용자 중심의 지능화된 서비스를 제공하는 기술이다. 본 논문에서는 스마트 홈에서 마이닝을 이용한 행동 순차 패턴 발견을 제안하였다. 마이닝을 이용하여 위치 트랜잭션에서 발생하는 위치간의 연관 규칙에 시간의 변이를 추가하여 행동 순차 패턴을 발견하였다. 인식된 시간 순서에 따라 사용자가 이동한 경로의 파악 및 행동 방향을 예측하고 그에 따른 서비스가 가능하다. 마이닝을 이용한 행동 순차 패턴의 성능 평가를 하기 위해 대응표본 t검정을 실시하여 유용성을 검증하였다. 평가 결과, 서비스에 대한 만족도의 차이가 통계적으로 의미가 있음을 증명하였고 높은 만족도를 보임을 확인하였다. 따라서 본 연구 결과를 활용하면 시장성 증대와 고부가 가치를 창출할 수 있을 것으로 기대하며 다양한 응용 분야에 활용이 가능하다.

References

  1. 김정기, 박승민, 장재우, "상황인식 처리 기술", 정보처리학회논문지, 10권, 4호, pp.182-188, 2003.
  2. Mark Weiser, Ubiquitous Computing, http://www.ubiq.com/hypertext/weiser/UbiHome.html.
  3. 최종화, 최순용, 신동규, 신동일, "지능적인 홈을 위한 상황인식 미들웨어에 대한 연구", 한국정보처리학회논문지, 11-A권, 7호, pp.629-536, 2004.
  4. MIT Media Lab, Things That Think Consortium, http://ttt.media.mit.edu.
  5. B. Brumitt, J. Krumm, and S. Shafer, "Ubiquitous Computing & the Role of Geometry," IEEE Personal Comm., pp.41-43, 2000. https://doi.org/10.1109/98.878536
  6. M. C. Mozer, "The Neural Network House : An Environment that Adapts to its Inhabitants," Proc. of Int. Sym. on Handheld and Ubiquitous Computing, 2000.
  7. Future Home Project, http://www.cordis.lu/ist.
  8. 김진수, "사용자 순차 패턴과 클러스터 내의 문서 유사도를 이용한 동적 추천 시스템", 인하대학교 대학원 석사학위논문, 2001.
  9. 심재호, 한승진, 임기욱, 이정현, "스마트 홈서비스를 위한 사용자 위치 추정 시스템", 한국컴퓨터정보학회 논문지, 제12권, 제5호, pp.155-162, 2007.
  10. 정경용, 김종훈, 류중경, 임기욱, 이정현, "연관 마이닝을 이용한 고객 관계 관리 적용", 한국콘텐츠학회논문지, 제8권, 제6호, 2008. https://doi.org/10.5392/JKCA.2008.8.6.026
  11. 정보통신연구진흥원, 결과보고서, 유비쿼터스/임베디드 시스템 소프트웨어 개발 환경 연구, 2007.
  12. L. Gong, "A Software Architecture for Open Service Gateways," IEEE Internet Computing, Vol.5, No.1, pp.64-70, 2001. https://doi.org/10.1109/4236.895144
  13. J. H. Kim, K. Y. Jung, and J. H. Lee, "Hybrid Music Filtering for Recommendation based Ubiquitous Computing Environment," LNAI 4259, pp.796-805, Springer-Verlag, 2006.
  14. 백순근, 교육연구 및 통계분석, 교육과학사, 2007.

Cited by

  1. Sequential pattern profiling based bio-detection for smart health service vol.18, pp.1, 2015, https://doi.org/10.1007/s10586-014-0370-3
  2. Mining Based Time-Series Sleeping Pattern Analysis for Life Big-Data pp.1572-834X, 2018, https://doi.org/10.1007/s11277-018-5983-z