DOI QR코드

DOI QR Code

Food Component Characterization of Muscle From Salmon Frame

연어 Frame 육의 식품성분 특성

  • Heu, Min-Soo (Division of Marine Life Science/Institute of Marine Industry, Gyeongsang National University) ;
  • Kim, Hyung-Jun (Division of Marine Life Science/Institute of Marine Industry, Gyeongsang National University) ;
  • Yoon, Min-Seok (Division of Marine Life Science/Institute of Marine Industry, Gyeongsang National University) ;
  • Park, Do-Yeong (Division of Marine Life Science/Institute of Marine Industry, Gyeongsang National University) ;
  • Park, Kwon-Hyun (Division of Marine Life Science/Institute of Marine Industry, Gyeongsang National University) ;
  • Kim, Jin-Soo (Division of Marine Life Science/Institute of Marine Industry, Gyeongsang National University)
  • 허민수 (경상대학교 해양생명과학부/해양산업연구소) ;
  • 김형준 (경상대학교 해양생명과학부/해양산업연구소) ;
  • 윤민석 (경상대학교 해양생명과학부/해양산업연구소) ;
  • 박도영 (경상대학교 해양생명과학부/해양산업연구소) ;
  • 박권현 (경상대학교 해양생명과학부/해양산업연구소) ;
  • 김진수 (경상대학교 해양생명과학부/해양산업연구소)
  • Published : 2008.11.28

Abstract

For the effective use of salmon processing by-products, the food components of salmon frame muscle were investigated and compared with those of fillet muscle. The proximate composition of salmon frame muscle was 73.2 g/100 g muscle for the moisture, 76.9 g/100 g dry material for the protein, 15.7 g/100 g dry material for the lipid and 4.1 g/100 g dry material for the ash. pH and volatile basic nitrogen (VBN) content of salmon frame muscle were 6.63 and 16 mg/100 g, respectively. The proximate composition, pH and VBN of salmon frame muscles were similar to those of salmon fillet muscle. The Hunter values of salmon frame muscle were 55.34 for L value, 16.60 for a value, 19.99 for b value and 48.83 for ${\Delta}E$ value, which were different compared to the salmon fillet muscle. The trichloroacetic acid (TCA) soluble-N content of salmon frame muscle was 542 mg/100 g, which was lower than that of salmon fillet muscle. No difference was found in fatty acid composition, total amino acid, calcium, phosphorus contents and sensory evaluation between salmon frame muscle and salmon fillet muscle. These results suggested that muscle from salmon frame could be used as resources for seafood processing.

References

  1. http://100.naver.com/100.nhn?docid=112726
  2. Han BW, Ji SG, Kwon JS, Goo JG, Kang KT, Jee SJ, Park SH, Heu MS, Kim JS. 2007. Food component characteristics of fish frame as basic ingredients of fish Gomtang. J Korean Soc Food Sci Nutr 36: 1417-1424 https://doi.org/10.3746/jkfn.2007.36.11.1417
  3. Han BW, Kim HS, Jee SJ, Lee JH, Kim HJ, Park SH, Ji SG, Heu MS, Kim JS. 2007. Characteristics of hot-water extracts from salmon frame as basic ingredients for Gomtang-like products. J Korean Soc Food Sci Nutr 36: 1326-1333 https://doi.org/10.3746/jkfn.2007.36.10.1326
  4. Heu MS, Park SH, Kim HS, Kim HJ, Han BW, Ji SG, Kim JG, Yoon MS, Kim JS. 2007. Improvement on fish odor of extracts from salmon frame soaked in soybean milk. J Korean Soc Food Sci Nutr 37: 223-230 https://doi.org/10.3746/jkfn.2008.37.2.223
  5. Heu MS, Park SH, Kim HS, Jee SJ, Lee JH, Kim HJ, Han BW, Kim JS. 2007. Improvement on the functional properties of Gomtang-like product from salmon frame using commercial enzymes. J Korean Soc Food Sci Nutr 36: 1596-1603 https://doi.org/10.3746/jkfn.2007.36.12.1596
  6. Heu MS, Park SH, Kim HS, Jee SJ, Kim HJ, Han BW, Ha JH, Kim JG, Kim JS. 2008. Preparation of snack using residues of fish Gomtang. J Korean Soc Food Sci Nutr 37: 92-102 https://doi.org/10.3746/jkfn.2008.37.1.97
  7. Joo DS, Cho SY, Kang HJ, Jin DH, Lee CH. 2000. Antimicrobial and antioxidant activity of protamine prepared from salmon spem. Korean J Food Sci Technol 32: 902-907
  8. Kim KY, Ustadi U, Kim SM. 2006. Characteristics of the protease inhibitor purified from chum salmon (Oncorhynchus keta) eggs. Food Sci Biotechnol 15: 28-32
  9. Wu TH, Bechtel PJ. 2008. Salmon by-product storage and oil extraction. Food Chem 111: 868-871 https://doi.org/10.1016/j.foodchem.2008.04.064
  10. AOAC. 1995. Official Methods of Analysis. 16th ed. Association of Official Analytical Chemists, Washington DC. p 69-74
  11. Ministry of Social Welfare of Social Welfare of Japan. 1960. Volatile basic nitrogen. In Guide to Experiment of Sanitary Infection. Kenpakusha. Vol lll, Tokyo. p 30-32
  12. Bligh EG, Dyer WJ. 1959. A rapid method of lipid extraction and purification. Can J Biochem Physiol 37: 911-917 https://doi.org/10.1139/o59-099
  13. AOCS. 1990. AOCS Official Method Ce 1b-89. In Official Methods and Recommended Practice of the AOCS. 4th ed. AOCS, Champaign, IL, USA
  14. Tsutagawa Y, Hosogai Y, Kawai H. 1994. Comparison of mineral and phosphorus contents of muscle and bone in the wild and cultured horse mackerel. J Food Hyg Soc Japan 34: 315-318
  15. Steel RGD, Torrie JH. 1980. Principle and Procedures of Statistics. 1st ed. McGraw-Hill Kogakusha, Tokyo. p 187-221
  16. Kim JS, Yeum DM, Kang HG, Kim IS, Kong CH, Lee TG, Heu MS. 2002. Fundamentals and applications for canned foods. Hyoil Publishing Co., Seoul. p 92-96
  17. Kato H, Rhue MR, Nishimura T. 1989. Role of acids and peptides in food taste. In Flavor chemistry: Trends and development. American Chemical Society, Washington DC. p 158-174
  18. Heu MS, Lee JH, Kim HJ, Jung IK, Park YS, Ha JH, Kim JS. 2008. Food component characteristics of boiled-dried silver-stripe round herring. J Korean Soc Food Sci Nutr 37: 891-899 https://doi.org/10.3746/jkfn.2008.37.7.891
  19. Mehta J. 1987. Eicosapentaenoic acid, its relevance in atherosclerosis and coronary heart disease. Am J Cardiol 59: 155-159 https://doi.org/10.1016/S0002-9149(87)80090-5
  20. Kim JS, Kim HS, Heu MS. 2006. Modern introductory foods. Hyoil Publishing Co., Seoul. p 45-48
  21. The Korean Nutrition Society. 2000. Recommended dietary allowances for Koreans. 7th ed. Chungang Publishing Co., Seoul. p 2

Cited by

  1. Assessment of Quality Changes in Mackerel Scomber japonicus During Refrigerated Storage: Development of a Freshness Indicator vol.49, pp.6, 2016, https://doi.org/10.5657/KFAS.2016.0731
  2. Preparation and Characterization of Canned Salmon Frame vol.43, pp.2, 2010, https://doi.org/10.5657/kfas.2010.43.2.093
  3. Preparation Conditions of Extracts from Salmon Frame using an Autoclave vol.42, pp.4, 2009, https://doi.org/10.5657/kfas.2009.42.4.307
  4. Investigation of Food Quality Characterization of Processing By-product (Frame Muscle) from the Sea Rainbow Trout Oncorhynchus mykiss vol.48, pp.1, 2015, https://doi.org/10.5657/KFAS.2015.0026