DOI QR코드

DOI QR Code

ON THE MINIMUM LENGTH OF SOME LINEAR CODES OF DIMENSION 6

  • Published : 2008.08.31

Abstract

For $q^5-q^3-q^2-q+1{\leq}d{\leq}q^5-q^3-q^2$, we prove the non-existence of a $[g_q(6,d),6,d]_q$ code and we give a $[g_q(6,d)+1,6,d]_q$ code by constructing appropriate 0-cycle in the projective space, where $g_q (k,d)={{\sum}^{k-1}_{i=0}}{\lceil}\frac{d}{q^i}{\rceil}$. Consequently, we have the minimum length $n_q(6,d)=g_q(6,d)+1\;for\;q^5-q^3-q^2-q+1{\leq}d{\leq}q^5-q^3-q^2\;and\;q{\geq}3$.

Keywords

Griesmer bound;linear code;0-cycle;minimum length;projective space

References

  1. N. Hamada and T. Helleseth, The nonexistence of some ternary linear codes and update of the bounds for n3(6, d), 1 $\leq$ d $\leq$ 243, Math. Japon. 52 (2000), no. 1, 31-43
  2. R. Hill, Optimal linear codes, Cryptography and coding, II (Cirencester, 1989), 75-104, Inst. Math. Appl. Conf. Ser. New Ser., 33, Oxford Univ. Press, New York, 1992
  3. T. Maruta, On the nonexistence of q-ary linear codes of dimension five, Des. Codes Cryptogr. 22 (2001), no. 2, 165-177 https://doi.org/10.1023/A:1008317022638
  4. T. Maruta, Griesmer bound for linear codes over finite fields, Available: http://www. geocities.com/mars39.geo/griesmer.htm
  5. N. Hamada, A characterization of some n, k, d; q-codes meeting the Griesmer bound using a minihyper in a finite projective geometry, Discrete Math. 116 (1993), no. 1-3, 229-268 https://doi.org/10.1016/0012-365X(93)90404-H

Cited by

  1. DETERMINATION OF MINIMUM LENGTH OF SOME LINEAR CODES vol.26, pp.1, 2013, https://doi.org/10.14403/jcms.2013.26.1.147