Bulletin of the Korean Mathematical Society (대한수학회보)
- Volume 45 Issue 3
- /
- Pages.419-425
- /
- 2008
- /
- 1015-8634(pISSN)
- /
- 2234-3016(eISSN)
DOI QR Code
ON THE MINIMUM LENGTH OF SOME LINEAR CODES OF DIMENSION 6
- Cheon, Eun-Ju (DEPARTMENT OF MATHEMATICS AND RINS GYEONGSANG NATIONAL UNIVERSITY) ;
- Kato, Takao (DEPARTMENT OF MATHEMATICAL SCIENCES YAMAGUCHI UNIVERSITY)
- Published : 2008.08.31
Abstract
For
File
References
- N. Hamada, A characterization of some n, k, d; q-codes meeting the Griesmer bound using a minihyper in a finite projective geometry, Discrete Math. 116 (1993), no. 1-3, 229-268 https://doi.org/10.1016/0012-365X(93)90404-H
-
N. Hamada and T. Helleseth, The nonexistence of some ternary linear codes and update of the bounds for n3(6, d), 1
$\leq$ d$\leq$ 243, Math. Japon. 52 (2000), no. 1, 31-43 - R. Hill, Optimal linear codes, Cryptography and coding, II (Cirencester, 1989), 75-104, Inst. Math. Appl. Conf. Ser. New Ser., 33, Oxford Univ. Press, New York, 1992
- T. Maruta, On the nonexistence of q-ary linear codes of dimension five, Des. Codes Cryptogr. 22 (2001), no. 2, 165-177 https://doi.org/10.1023/A:1008317022638
- T. Maruta, Griesmer bound for linear codes over finite fields, Available: http://www. geocities.com/mars39.geo/griesmer.htm
Cited by
- DETERMINATION OF MINIMUM LENGTH OF SOME LINEAR CODES vol.26, pp.1, 2013, https://doi.org/10.14403/jcms.2013.26.1.147