Bulletin of the Korean Mathematical Society (대한수학회보)
- Volume 45 Issue 3
- /
- Pages.523-561
- /
- 2008
- /
- 1015-8634(pISSN)
- /
- 2234-3016(eISSN)
DOI QR Code
COMPLEX SCALING AND GEOMETRIC ANALYSIS OF SEVERAL VARIABLES
- Kim, Kang-Tae (DEPARTMENT OF MATHEMATICS POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY) ;
- Krantz, Steven G. (AMERICAN INSTITUTE OF MATHEMATICS)
- Published : 2008.08.31
Abstract
The purpose of this paper is to survey the use of the important method of scaling in analysis, and particularly in complex analysis. Applications are given to the study of automorophism groups, to canonical kernels, to holomorphic invariants, and to analysis in infinite dimensions. Current research directions are described and future paths indicated.
File
References
-
T. Akahori, A new approach to the local embedding theorem of CR-structures for n
$\geq$ 4 (the local solvability for the operator$ \partial$ b in the abstract sense), Mem. Amer. Math. Soc. 67 (1987), no. 366, xvi+257 pp - G. Aladro, The comparability of the Kobayashi approach region and the admissible approach region, Illinois J. Math. 33 (1989), no. 1, 42-63
- E. Bedford and J. Dadok, Bounded domains with prescribed group of automorphisms, Comment. Math. Helv. 62 (1987), no. 4, 561-572 https://doi.org/10.1007/BF02564462
-
E. Bedford and S. Pinchuk, Domains in
$C^n+1$ with noncompact automorphism group, J. Geom. Anal. 1 (1991), no. 3, 165-191 https://doi.org/10.1007/BF02921302 -
E. Bedford and S. Pinchuk, Domains in
$C^2$ with noncompact automorphism groups, Indiana Univ. Math. J. 47 (1998), no. 1, 199-222 -
S. R. Bell, Biholomorphic mappings and the
$\partial$ -problem, Ann. of Math. (2) 114 (1981), no. 1, 103-113 https://doi.org/10.2307/1971379 - S. Bell and E. Ligocka, A simplification and extension of Fefferman's theorem on biholomorphic mappings, Invent. Math. 57 (1980), no. 3, 283-289 https://doi.org/10.1007/BF01418930
-
F. Berteloot, Characterization of models in
$C^2$ by their automorphism groups, Internat. J. Math. 5 (1994), no. 5, 619-634 https://doi.org/10.1142/S0129167X94000322 -
T. Bloom and I. Graham, A geometric characterization of points of type m on real submanifolds of
$C^n$ , J. Differential Geometry 12 (1977), no. 2, 171-182. https://doi.org/10.4310/jdg/1214433979 - H. Boas, E. Straube, and J. Yu, Boundary limits of the Bergman kernel and metric, Michigan Math. J. 42 (1995), no. 3, 449-461 https://doi.org/10.1307/mmj/1029005306
- A. Bogges, CR Manifolds and the Tangential Cauchy-Riemann Complex, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1991
- D. Burns, S. Shnider, and R. O. Wells, Deformations of strictly pseudoconvex domains, Invent. Math. 46 (1978), no. 3, 237-253 https://doi.org/10.1007/BF01390277
- J. Byun, On the automorphism group of the Kohn-Nirenberg domain, J. Math. Anal. Appl. 266 (2002), no. 2, 342-356 https://doi.org/10.1006/jmaa.2001.7736
- J. Byun, On the boundary accumulation points for the holomorphic automorphism groups, Michigan Math. J. 51 (2003), no. 2, 379-386 https://doi.org/10.1307/mmj/1060013203
- J. Byun and H. Gaussier, On the compactness of the automorphism group of a domain, C. R. Math. Acad. Sci. Paris 341 (2005), no. 9, 545-548 https://doi.org/10.1016/j.crma.2005.09.018
- J. Byun, H. Gaussier, and K.-T. Kim, Weak-type normal families of holomorphic mappings in Banach spaces and characterization of the Hilbert ball by its automorphism group, J. Geom. Anal. 12 (2002), no. 4, 581-599 https://doi.org/10.1007/BF02930654
- D. Catlin, Estimates of invariant metrics on pseudoconvex domains of dimension two, Math. Z. 200 (1989), no. 3, 429-466 https://doi.org/10.1007/BF01215657
- S. S. Chern and J. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219-271 https://doi.org/10.1007/BF02392146
-
M. Christ, Regularity properties of the
$\partial$ b equation on weakly pseudoconvex CR manifolds of dimension 3, J. Amer. Math. Soc. 1 (1988), no. 3, 587-646 https://doi.org/10.2307/1990950 - J. P. D'Angelo, Several Complex Variables and the Geometry of Real Hypersurfaces, CRC Press, Boca Raton, FL, 1993
- J. P. D'Angelo, A gentle introduction to points of finite type on real hypersurfaces, Explorations in complex and Riemannian geometry, 19-36, Contemp. Math., 332, Amer. Math. Soc., Providence, RI, 2003 https://doi.org/10.1090/conm/332/05928
- J. P. D'Angelo and J. J. Kohn, Subelliptic estimates and finite type, Several complex variables (Berkeley, CA, 1995-1996), 199-232, Math. Sci. Res. Inst. Publ., 37, Cambridge Univ. Press, Cambridge, 1999
- K. Diederich and J. E. Fornaess, Pseudoconvex domains with real-analytic boundary, Ann. Math. (2) 107 (1978), no. 2, 371-384 https://doi.org/10.2307/1971120
- K. Diederich and S. Pinchuk, Reflection principle in higher dimensions, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), Doc. Math. 1998, Extra Vol. II, 703-712
- P. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, 259. Springer-Verlag, New York, 1983
- V. Ejov and A. Isaev, On the dimension of the stability group for a Levi non-degenerate hypersurface, Illinois J. Math. 49 (2005), no. 4, 1155-1169
- V. Ezhov, Linearization of automorphisms of a real-analytic hypersurface, Izv. Akad. Nauk SSSR Ser. Mat. 49 (1985), no. 4, 731-765
- C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1-65 https://doi.org/10.1007/BF01406845
- C. Fefferman and J. Kohn, Holder estimates on domains of complex dimension two and on three-dimensional CR manifolds, Adv. in Math. 69 (1988), no. 2, 223-303 https://doi.org/10.1016/0001-8708(88)90002-3
- S. Frankel, Complex geometry of convex domains that cover varieties, Acta Math. 163 (1989), no. 1-2, 109-149 https://doi.org/10.1007/BF02392734
- S. Fu, Asymptotic expansions of invariant metrics of strictly pseudoconvex domains, Canad. Math. Bull. 38 (1995), no. 2, 196-206 https://doi.org/10.4153/CMB-1995-028-9
- H. Gaussier and A. Sukhov, On the geometry of model almost complex manifolds with boundary, Math. Z. 254 (2006), no. 3, 567-589 https://doi.org/10.1007/s00209-006-0959-1
- H. Gaussier and A. Sukhov, Estimates of the Kobayashi-Royden metric in almost complex manifolds, Bull. Soc. Math. France 133 (2005), no. 2, 259-273 https://doi.org/10.24033/bsmf.2486
- I. Graham, Boundary behavior of the Caratheodory and Kobayashi metrics on strongly pseudoconvex domains in Cn with smooth boundary, Trans. Amer. Math. Soc. 207 (1975), 219-240 https://doi.org/10.2307/1997175
-
R. E. Greene and S. G. Krantz, Deformation of complex structures, estimates for the
$\partial$ equation, and stability of the Bergman kernel, Adv. in Math. 43 (1982), no. 1, 1-86 https://doi.org/10.1016/0001-8708(82)90028-7 - R. E. Greene and S. G. Krantz, Characterizations of certain weakly pseudoconvex domains with noncompact automorphism groups, Complex analysis (University Park, Pa., 1986), 121-157, Lecture Notes in Math., 1268, Springer, Berlin, 1987
- R. E. Greene and S. G. Krantz, Biholomorphic self-maps of domains, Complex analysis, II (College Park, Md., 1985-86), 136-207, Lecture Notes in Math., 1276, Springer, Berlin, 1987
- R. E. Greene and S. G. Krantz, The automorphism groups of strongly pseudoconvex domains, Math. Ann. 261 (1982), no. 4, 425-446 https://doi.org/10.1007/BF01457445
-
R. E. Greene and S. G. Krantz, Invariants of Bergman geometry and the automorphism groups of domains in
$C^n$ , Geometrical and algebraical aspects in several complex variables (Cetraro, 1989), 107-136, Sem. Conf., 8, EditEl, Rende, 1991 - R. E. Greene and S. G. Krantz, Geometric foundations for analysis on complex domains, Proc. of the 1994 Conference in Cetraro (D. Struppa, ed.), 1995
- M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), no. 2, 307-347 https://doi.org/10.1007/BF01388806
- S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962
-
L. Hormander,
$L^2$ estimates and existence theorems for the$\partial$ operator, Acta Math. 113 (1965), 89-152 https://doi.org/10.1007/BF02391775 - L. K. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, American Mathematical Society, Providence, 1963
- X. Huang, Schwarz reflection principle in complex spaces of dimension two, Comm. Partial Differential Equations 21 (1996), no. 11-12, 1781-1828 https://doi.org/10.1080/03605309608821246
- A. Huckleberry and E. Oeljeklaus, Classification Theorems for Almost Homogeneous Spaces, Institut Elie Cartan, 9. Universite de Nancy, Institut Elie Cartan, Nancy, 1984
- A Isaev and S. G. Krantz, Domains with non-compact automorphism group: a survey, Adv. Math. 146 (1999), no. 1, 1-38 https://doi.org/10.1006/aima.1998.1821
- A. V. Isaev and N. G. Kruzhilin, Effective actions of the unitary group on complex manifolds, Canad. J. Math. 54 (2002), no. 6, 1254-1279 https://doi.org/10.4153/CJM-2002-048-2
- K.-T. Kim, Domains in Cn with a piecewise Levi flat boundary which possess a noncompact automorphism group, Math. Ann. 292 (1992), no. 4, 575-586 https://doi.org/10.1007/BF01444637
- K.-T. Kim, On the automorphism groups of convex domains in Cn, Adv. Geom. 4 (2004), no. 1, 33-40 https://doi.org/10.1515/advg.2004.005
- K.-T. Kim, Asymptotic behavior of the curvature of the Bergman metric of the thin domains, Pacific J. Math. 155 (1992), no. 1, 99-110 https://doi.org/10.2140/pjm.1992.155.99
- K.-T. Kim and S.-Y. Kim, CR hypersurfaces with a weakly-contracting automorphism, J. Geom. Anal. (To appear)
- K.-T. Kim and S. G. Krantz, Complex scaling and domains with non-compact automorphism group, Illinois J. Math. 45 (2001), no. 4, 1273-1299
- K.-T. Kim and S. G. Krantz, Characterization of the Hilbert ball by its automorphism group, Trans. Amer. Math. Soc. 354 (2002), no. 7, 2797-2818 https://doi.org/10.1090/S0002-9947-02-02895-7
-
K.-T. Kim, S. G. Krantz, and A. Spiro, Analytic polyhedra in
$C^2$ with a non-compact automorphism group, J. Reine Angew. Math. 579 (2005), 1-12 - K.-T. Kim and S. Lee, Asymptotic behavior of the Bergman kernel and associated invariants in certain infinite type pseudoconvex domains, Forum Math. 14 (2002), no. 5, 775-795 https://doi.org/10.1515/form.2002.033
- K.-T. Kim and D. Ma, A note on: 'Characterization of the Hilbert ball by its automorphisms' J. Korean Math. Soc. 40 (2003), no. 3, 503-516 https://doi.org/10.4134/BKMS.2003.40.3.503
- K.-T. Kim and D. Ma, A note on: 'Characterization of the Hilbert ball by its automorphisms' MR1973915, J. Math. Anal. Appl. 309 (2005), no. 2, 761-763 https://doi.org/10.1016/j.jmaa.2004.09.024
-
K.-T. Kim and A. Pagano, Normal analytic polyhedra in
$C^2$ with a noncompact automorphism group, J. Geom. Anal. 11 (2001), no. 2, 283-293 https://doi.org/10.1007/BF02921967 - K.-T. Kim and G. Schmalz, Dynamics of local automorphisms of embedded CRmanifolds, Mat. Zametki 76 (2004), no. 3, 477-480 https://doi.org/10.4213/mzm575
- K.-T. Kim and G. Schmalz, Dynamics of local automorphisms of embedded CRmanifolds, Mtranslation in Math. Notes 76 (2004), no. 3-4, 443-446 https://doi.org/10.1023/B:MATN.0000043473.56503.f3
- K.-T. Kim and J. Yu, Boundary behavior of the Bergman curvature in strictly pseudoconvex polyhedral domains, Pacific J. Math. 176 (1996), no. 1, 141-163 https://doi.org/10.2140/pjm.1996.176.141
- P. Klembeck, Kahler metrics of negative curvature, the Bergmann metric near the boundary, and the Kobayashi metric on smooth bounded strictly pseudoconvex sets, Indiana Univ. Math. J. 27 (1978), no. 2, 275-282 https://doi.org/10.1512/iumj.1978.27.27020
- S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York, 1970
- S. Kobayashi, Transformation Groups in Differential Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 70, Springer-Verlag, New York-Heidelberg, 1972
-
J. J. Kohn, Boundary behavior of
$\delta$ on weakly pseudo-convex manifolds of dimension two, J. Differential Geometry 6 (1972), 523-542 https://doi.org/10.4310/jdg/1214430641 - J. J. Kohn and L. Nirenberg, A pseudo-convex domain not admitting a holomorphic support function, Math. Ann. 201 (1973), 265-268 https://doi.org/10.1007/BF01428194
- S. G. Krantz, Function Theory of Several Complex Variables, American Mathematical Society, Providence, RI, 2000
- S. G. Krantz, Calculation and estimation of the Poisson kernel, J. Math. Anal. Appl. 302 (2005), no. 1, 143-148 https://doi.org/10.1016/j.jmaa.2004.08.010
- S. G. Krantz, Partial Differential Equations and Complex Analysis, CRC Press, Boca Raton, FL, 1992
- N. Kruzhilin and A. V. Loboda, Linearization of local automorphisms of pseudoconvex surfaces, Dokl. Akad. Nauk SSSR 271 (1983), no. 2, 280-282
- M. Kuranishi, Strongly pseudoconvex CR structures over small balls. III. An embedding theorem, Ann. of Math. (2) 116 (1982), no. 2, 249-330 https://doi.org/10.2307/2007063
- M. Landucci, The automorphism group of domains with boundary points of infinite type, Illinois J. Math. 48 (2004), no. 3, 875-885
-
M. Landucci and G. Patrizio, Unbounded domains in
$C^2$ with non-compact automorphisms group, Results Math. 42 (2002), no. 3-4, 300-307 https://doi.org/10.1007/BF03322857 - K. H. Lee, Automorphism groups of almost complex manifolds, Ph. D. dissertation, Pohang University of Science and Technology (POSTECH), Pohang 790-784 Korea, (2005), 97 pages
- K. H. Lee, Almost complex manifolds and Cartan's uniqueness theorem, Trans. Amer. Math. Soc. 358 (2006), no. 5, 2057-2069 https://doi.org/10.1090/S0002-9947-05-03973-5
- K. H. Lee, Domains in almost complex manifolds with an automorphism orbit accumulating at a strongly pseudoconvex boundary point, Michigan Math. J. 54 (2006), no. 1, 179-205 https://doi.org/10.1307/mmj/1144437443
- K. H. Lee, Strongly pseudoconvex domains in almost complex manifolds, J. Reine Angew. Math. (To appear.)
-
S. Lee, Asymptotic behavior of the Kobayashi metric on certain infinite-type pseudoconvex domains in
$C^2$ , J. Math. Anal. Appl. 256 (2001), no. 1, 190-215 https://doi.org/10.1006/jmaa.2000.7307 - D. Ma, Sharp estimates of the Kobayashi metric near strongly pseudoconvex points, The Madison Symposium on Complex Analysis (Madison, WI, 1991), 329-338, Contemp. Math., 137, Amer. Math. Soc., Providence, RI, 1992
- X. Ma and G. Marinescu, Generalized Bergman kernels on symplectic manifolds, C. R. Math. Acad. Sci. Paris 339 (2004), no. 7, 493-498 https://doi.org/10.1016/j.crma.2004.07.016
- X. Ma and G. Marinescu, Holomorphic Morse Inequalities and Bergman Kernels, Progress in Mathematics, 254. Birkhauser Verlag, Basel, 2007
-
J. McNeal, Boundary behavior of the Bergman kernel function in
$C^2$ , Duke Math. J. 58 (1989), no. 2, 499-512 https://doi.org/10.1215/S0012-7094-89-05822-5 - J. McNeal, Local geometry of decoupled pseudoconvex domains, Complex analysis (Wuppertal, 1991), 223-230, Aspects Math., E17, Vieweg, Braunschweig, 1991
- J. McNeal, Estimates on the Bergman kernels of convex domains, Adv. Math. 109 (1994), no. 1, 108-139 https://doi.org/10.1006/aima.1994.1082
-
J. McNeal, Subelliptic estimates and scaling in the
$\partial$ -Neumann problem, Explorations in complex and Riemannian geometry, 197-217, Contemp. Math., 332, Amer. Math. Soc., Providence, RI, 2003 https://doi.org/10.1090/conm/332/05937 - J. Moser, Holomorphic equivalence and normal forms of hypersurfaces, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Part 2, Stanford Univ., Stanford, Calif., 1973), pp. 109-112. Amer. Math. Soc., Providence, R. I., 1975
- J. Moser, The holomorphic equivalence of real hypersurfaces, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), pp. 659-668, Acad. Sci. Fennica, Helsinki, 1980
-
J. Moser and S. Webster, Normal forms for real surfaces in
$C^2$ near complex tangents and hyperbolic surface transformations, Acta Math. 150 (1983), no. 3-4, 255-296 https://doi.org/10.1007/BF02392973 -
A. Nagel, J. P. Rosay, E. M. Stein, and S. Wainger, Estimates for the Bergman and Szego kernels in
$C^2$ , Ann. of Math. (2) 129 (1989), no. 1, 113-149 https://doi.org/10.2307/1971487 - R. Narasimhan, Several Complex Variables, University of Chicago Press, Chicago, IL, 1971
- L. Nirenberg, Lectures on linear partial differential equations, Amer. Math. Soc., Providence, RI, 1973
- S. Pinchuk, The scaling method and holomorphic mappings, Several complex variables and complex geometry, Part 1 (Santa Cruz, CA, 1989), 151-161, Proc. Sympos. Pure Math., 52, Part 1, Amer. Math. Soc., Providence, RI, 1991
-
J. P. Rosay, Sur une caracterisation de la boule parmi les domaines de
$C^n$ par son groupe d'automorphismes, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 4, ix, 91-97 https://doi.org/10.5802/aif.768 - R. Saerens and W. Zame, The isometry groups of manifolds and the automorphism groups of domains, Trans. Amer. Math. Soc. 301 (1987), no. 1, 413-429 https://doi.org/10.2307/2000347
- R. Schoen, On the conformal and CR automorphism groups, Geom. Funct. Anal. 5 (1995), no. 2, 464-481 https://doi.org/10.1007/BF01895676
- S. Sternberg, Local contractions and a theorem of Poincare, Amer. J. Math. 79 (1957), 809-824 https://doi.org/10.2307/2372437
- N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japan. J. Math. (N.S.) 2 (1976), no. 1, 131-190 https://doi.org/10.4099/math1924.2.131
- S.Webster, On the Moser normal form at a non-umbilic point, Math. Ann. 233 (1978), no. 2, 97-102 https://doi.org/10.1007/BF01421918
- S.Webster, On the proof of Kuranishi's embedding theorem, Ann. Inst. H. Poincare Anal. Non Lineaire 6 (1989), no. 3, 183-207 https://doi.org/10.1016/S0294-1449(16)30322-5
- J. Winkelmann, Realizing connected Lie groups as automorphism groups of complex manifolds, Comment. Math. Helv. 79 (2004), no. 2, 285-299 https://doi.org/10.1007/s00014-003-0794-5
-
B. Wong, Characterization of the unit ball in
$C^n$ by its automorphism group, Invent. Math. 41 (1977), no. 3, 253-257 https://doi.org/10.1007/BF01403050 - H.Wu, Old and new invariant metrics on complex manifolds, Several complex variables (Stockholm, 1987/1988), 640-682, Math. Notes, 38, Princeton Univ. Press, Princeton, NJ, 1993
Cited by
- Complete prolongation for infinitesimal automorphisms on almost complex manifolds vol.264, pp.4, 2010, https://doi.org/10.1007/s00209-009-0496-9
- Gromov hyperbolicity and the Kobayashi metric on convex domains of finite type vol.365, pp.3-4, 2016, https://doi.org/10.1007/s00208-015-1278-9
- Integrable Submanifolds in Almost Complex Manifolds vol.20, pp.1, 2010, https://doi.org/10.1007/s12220-009-9099-2
- The automorphism groups of domains in complex space: a survey vol.36, pp.2, 2013, https://doi.org/10.2989/16073606.2013.779982