• 발행 : 2008.08.31


The purpose of this paper is to survey the use of the important method of scaling in analysis, and particularly in complex analysis. Applications are given to the study of automorophism groups, to canonical kernels, to holomorphic invariants, and to analysis in infinite dimensions. Current research directions are described and future paths indicated.


  1. T. Akahori, A new approach to the local embedding theorem of CR-structures for n $\geq$ 4 (the local solvability for the operator $ \partial$b in the abstract sense), Mem. Amer. Math. Soc. 67 (1987), no. 366, xvi+257 pp
  2. G. Aladro, The comparability of the Kobayashi approach region and the admissible approach region, Illinois J. Math. 33 (1989), no. 1, 42-63
  3. E. Bedford and J. Dadok, Bounded domains with prescribed group of automorphisms, Comment. Math. Helv. 62 (1987), no. 4, 561-572
  4. E. Bedford and S. Pinchuk, Domains in $C^n+1$ with noncompact automorphism group, J. Geom. Anal. 1 (1991), no. 3, 165-191
  5. E. Bedford and S. Pinchuk, Domains in $C^2$ with noncompact automorphism groups, Indiana Univ. Math. J. 47 (1998), no. 1, 199-222
  6. S. R. Bell, Biholomorphic mappings and the $\partial$-problem, Ann. of Math. (2) 114 (1981), no. 1, 103-113
  7. S. Bell and E. Ligocka, A simplification and extension of Fefferman's theorem on biholomorphic mappings, Invent. Math. 57 (1980), no. 3, 283-289
  8. F. Berteloot, Characterization of models in $C^2$ by their automorphism groups, Internat. J. Math. 5 (1994), no. 5, 619-634
  9. T. Bloom and I. Graham, A geometric characterization of points of type m on real submanifolds of $C^n$, J. Differential Geometry 12 (1977), no. 2, 171-182.
  10. H. Boas, E. Straube, and J. Yu, Boundary limits of the Bergman kernel and metric, Michigan Math. J. 42 (1995), no. 3, 449-461
  11. A. Bogges, CR Manifolds and the Tangential Cauchy-Riemann Complex, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1991
  12. D. Burns, S. Shnider, and R. O. Wells, Deformations of strictly pseudoconvex domains, Invent. Math. 46 (1978), no. 3, 237-253
  13. J. Byun, On the automorphism group of the Kohn-Nirenberg domain, J. Math. Anal. Appl. 266 (2002), no. 2, 342-356
  14. J. Byun, On the boundary accumulation points for the holomorphic automorphism groups, Michigan Math. J. 51 (2003), no. 2, 379-386
  15. J. Byun and H. Gaussier, On the compactness of the automorphism group of a domain, C. R. Math. Acad. Sci. Paris 341 (2005), no. 9, 545-548
  16. J. Byun, H. Gaussier, and K.-T. Kim, Weak-type normal families of holomorphic mappings in Banach spaces and characterization of the Hilbert ball by its automorphism group, J. Geom. Anal. 12 (2002), no. 4, 581-599
  17. D. Catlin, Estimates of invariant metrics on pseudoconvex domains of dimension two, Math. Z. 200 (1989), no. 3, 429-466
  18. S. S. Chern and J. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219-271
  19. M. Christ, Regularity properties of the $\partial$b equation on weakly pseudoconvex CR manifolds of dimension 3, J. Amer. Math. Soc. 1 (1988), no. 3, 587-646
  20. J. P. D'Angelo, Several Complex Variables and the Geometry of Real Hypersurfaces, CRC Press, Boca Raton, FL, 1993
  21. J. P. D'Angelo, A gentle introduction to points of finite type on real hypersurfaces, Explorations in complex and Riemannian geometry, 19-36, Contemp. Math., 332, Amer. Math. Soc., Providence, RI, 2003
  22. J. P. D'Angelo and J. J. Kohn, Subelliptic estimates and finite type, Several complex variables (Berkeley, CA, 1995-1996), 199-232, Math. Sci. Res. Inst. Publ., 37, Cambridge Univ. Press, Cambridge, 1999
  23. K. Diederich and J. E. Fornaess, Pseudoconvex domains with real-analytic boundary, Ann. Math. (2) 107 (1978), no. 2, 371-384
  24. K. Diederich and S. Pinchuk, Reflection principle in higher dimensions, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), Doc. Math. 1998, Extra Vol. II, 703-712
  25. P. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, 259. Springer-Verlag, New York, 1983
  26. V. Ejov and A. Isaev, On the dimension of the stability group for a Levi non-degenerate hypersurface, Illinois J. Math. 49 (2005), no. 4, 1155-1169
  27. V. Ezhov, Linearization of automorphisms of a real-analytic hypersurface, Izv. Akad. Nauk SSSR Ser. Mat. 49 (1985), no. 4, 731-765
  28. C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1-65
  29. C. Fefferman and J. Kohn, Holder estimates on domains of complex dimension two and on three-dimensional CR manifolds, Adv. in Math. 69 (1988), no. 2, 223-303
  30. S. Frankel, Complex geometry of convex domains that cover varieties, Acta Math. 163 (1989), no. 1-2, 109-149
  31. S. Fu, Asymptotic expansions of invariant metrics of strictly pseudoconvex domains, Canad. Math. Bull. 38 (1995), no. 2, 196-206
  32. H. Gaussier and A. Sukhov, On the geometry of model almost complex manifolds with boundary, Math. Z. 254 (2006), no. 3, 567-589
  33. H. Gaussier and A. Sukhov, Estimates of the Kobayashi-Royden metric in almost complex manifolds, Bull. Soc. Math. France 133 (2005), no. 2, 259-273
  34. I. Graham, Boundary behavior of the Caratheodory and Kobayashi metrics on strongly pseudoconvex domains in Cn with smooth boundary, Trans. Amer. Math. Soc. 207 (1975), 219-240
  35. R. E. Greene and S. G. Krantz, Deformation of complex structures, estimates for the $\partial$ equation, and stability of the Bergman kernel, Adv. in Math. 43 (1982), no. 1, 1-86
  36. R. E. Greene and S. G. Krantz, Characterizations of certain weakly pseudoconvex domains with noncompact automorphism groups, Complex analysis (University Park, Pa., 1986), 121-157, Lecture Notes in Math., 1268, Springer, Berlin, 1987
  37. R. E. Greene and S. G. Krantz, Biholomorphic self-maps of domains, Complex analysis, II (College Park, Md., 1985-86), 136-207, Lecture Notes in Math., 1276, Springer, Berlin, 1987
  38. R. E. Greene and S. G. Krantz, The automorphism groups of strongly pseudoconvex domains, Math. Ann. 261 (1982), no. 4, 425-446
  39. R. E. Greene and S. G. Krantz, Invariants of Bergman geometry and the automorphism groups of domains in $C^n$, Geometrical and algebraical aspects in several complex variables (Cetraro, 1989), 107-136, Sem. Conf., 8, EditEl, Rende, 1991
  40. R. E. Greene and S. G. Krantz, Geometric foundations for analysis on complex domains, Proc. of the 1994 Conference in Cetraro (D. Struppa, ed.), 1995
  41. M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), no. 2, 307-347
  42. S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962
  43. L. Hormander, $L^2$ estimates and existence theorems for the $\partial$ operator, Acta Math. 113 (1965), 89-152
  44. L. K. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, American Mathematical Society, Providence, 1963
  45. X. Huang, Schwarz reflection principle in complex spaces of dimension two, Comm. Partial Differential Equations 21 (1996), no. 11-12, 1781-1828
  46. A. Huckleberry and E. Oeljeklaus, Classification Theorems for Almost Homogeneous Spaces, Institut Elie Cartan, 9. Universite de Nancy, Institut Elie Cartan, Nancy, 1984
  47. A Isaev and S. G. Krantz, Domains with non-compact automorphism group: a survey, Adv. Math. 146 (1999), no. 1, 1-38
  48. A. V. Isaev and N. G. Kruzhilin, Effective actions of the unitary group on complex manifolds, Canad. J. Math. 54 (2002), no. 6, 1254-1279
  49. K.-T. Kim, Domains in Cn with a piecewise Levi flat boundary which possess a noncompact automorphism group, Math. Ann. 292 (1992), no. 4, 575-586
  50. K.-T. Kim, On the automorphism groups of convex domains in Cn, Adv. Geom. 4 (2004), no. 1, 33-40
  51. K.-T. Kim, Asymptotic behavior of the curvature of the Bergman metric of the thin domains, Pacific J. Math. 155 (1992), no. 1, 99-110
  52. K.-T. Kim and S.-Y. Kim, CR hypersurfaces with a weakly-contracting automorphism, J. Geom. Anal. (To appear)
  53. K.-T. Kim and S. G. Krantz, Complex scaling and domains with non-compact automorphism group, Illinois J. Math. 45 (2001), no. 4, 1273-1299
  54. K.-T. Kim and S. G. Krantz, Characterization of the Hilbert ball by its automorphism group, Trans. Amer. Math. Soc. 354 (2002), no. 7, 2797-2818
  55. K.-T. Kim, S. G. Krantz, and A. Spiro, Analytic polyhedra in $C^2$ with a non-compact automorphism group, J. Reine Angew. Math. 579 (2005), 1-12
  56. K.-T. Kim and S. Lee, Asymptotic behavior of the Bergman kernel and associated invariants in certain infinite type pseudoconvex domains, Forum Math. 14 (2002), no. 5, 775-795
  57. K.-T. Kim and D. Ma, A note on: 'Characterization of the Hilbert ball by its automorphisms' J. Korean Math. Soc. 40 (2003), no. 3, 503-516
  58. K.-T. Kim and D. Ma, A note on: 'Characterization of the Hilbert ball by its automorphisms' MR1973915, J. Math. Anal. Appl. 309 (2005), no. 2, 761-763
  59. K.-T. Kim and A. Pagano, Normal analytic polyhedra in $C^2$ with a noncompact automorphism group, J. Geom. Anal. 11 (2001), no. 2, 283-293
  60. K.-T. Kim and G. Schmalz, Dynamics of local automorphisms of embedded CRmanifolds, Mat. Zametki 76 (2004), no. 3, 477-480
  61. K.-T. Kim and G. Schmalz, Dynamics of local automorphisms of embedded CRmanifolds, Mtranslation in Math. Notes 76 (2004), no. 3-4, 443-446
  62. K.-T. Kim and J. Yu, Boundary behavior of the Bergman curvature in strictly pseudoconvex polyhedral domains, Pacific J. Math. 176 (1996), no. 1, 141-163
  63. P. Klembeck, Kahler metrics of negative curvature, the Bergmann metric near the boundary, and the Kobayashi metric on smooth bounded strictly pseudoconvex sets, Indiana Univ. Math. J. 27 (1978), no. 2, 275-282
  64. S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York, 1970
  65. S. Kobayashi, Transformation Groups in Differential Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 70, Springer-Verlag, New York-Heidelberg, 1972
  66. J. J. Kohn, Boundary behavior of $\delta$ on weakly pseudo-convex manifolds of dimension two, J. Differential Geometry 6 (1972), 523-542
  67. J. J. Kohn and L. Nirenberg, A pseudo-convex domain not admitting a holomorphic support function, Math. Ann. 201 (1973), 265-268
  68. S. G. Krantz, Function Theory of Several Complex Variables, American Mathematical Society, Providence, RI, 2000
  69. S. G. Krantz, Calculation and estimation of the Poisson kernel, J. Math. Anal. Appl. 302 (2005), no. 1, 143-148
  70. S. G. Krantz, Partial Differential Equations and Complex Analysis, CRC Press, Boca Raton, FL, 1992
  71. N. Kruzhilin and A. V. Loboda, Linearization of local automorphisms of pseudoconvex surfaces, Dokl. Akad. Nauk SSSR 271 (1983), no. 2, 280-282
  72. M. Kuranishi, Strongly pseudoconvex CR structures over small balls. III. An embedding theorem, Ann. of Math. (2) 116 (1982), no. 2, 249-330
  73. M. Landucci, The automorphism group of domains with boundary points of infinite type, Illinois J. Math. 48 (2004), no. 3, 875-885
  74. M. Landucci and G. Patrizio, Unbounded domains in $C^2$ with non-compact automorphisms group, Results Math. 42 (2002), no. 3-4, 300-307
  75. K. H. Lee, Automorphism groups of almost complex manifolds, Ph. D. dissertation, Pohang University of Science and Technology (POSTECH), Pohang 790-784 Korea, (2005), 97 pages
  76. K. H. Lee, Almost complex manifolds and Cartan's uniqueness theorem, Trans. Amer. Math. Soc. 358 (2006), no. 5, 2057-2069
  77. K. H. Lee, Domains in almost complex manifolds with an automorphism orbit accumulating at a strongly pseudoconvex boundary point, Michigan Math. J. 54 (2006), no. 1, 179-205
  78. K. H. Lee, Strongly pseudoconvex domains in almost complex manifolds, J. Reine Angew. Math. (To appear.)
  79. S. Lee, Asymptotic behavior of the Kobayashi metric on certain infinite-type pseudoconvex domains in $C^2$, J. Math. Anal. Appl. 256 (2001), no. 1, 190-215
  80. D. Ma, Sharp estimates of the Kobayashi metric near strongly pseudoconvex points, The Madison Symposium on Complex Analysis (Madison, WI, 1991), 329-338, Contemp. Math., 137, Amer. Math. Soc., Providence, RI, 1992
  81. X. Ma and G. Marinescu, Generalized Bergman kernels on symplectic manifolds, C. R. Math. Acad. Sci. Paris 339 (2004), no. 7, 493-498
  82. X. Ma and G. Marinescu, Holomorphic Morse Inequalities and Bergman Kernels, Progress in Mathematics, 254. Birkhauser Verlag, Basel, 2007
  83. J. McNeal, Boundary behavior of the Bergman kernel function in $C^2$, Duke Math. J. 58 (1989), no. 2, 499-512
  84. J. McNeal, Local geometry of decoupled pseudoconvex domains, Complex analysis (Wuppertal, 1991), 223-230, Aspects Math., E17, Vieweg, Braunschweig, 1991
  85. J. McNeal, Estimates on the Bergman kernels of convex domains, Adv. Math. 109 (1994), no. 1, 108-139
  86. J. McNeal, Subelliptic estimates and scaling in the $\partial$-Neumann problem, Explorations in complex and Riemannian geometry, 197-217, Contemp. Math., 332, Amer. Math. Soc., Providence, RI, 2003
  87. J. Moser, Holomorphic equivalence and normal forms of hypersurfaces, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Part 2, Stanford Univ., Stanford, Calif., 1973), pp. 109-112. Amer. Math. Soc., Providence, R. I., 1975
  88. J. Moser, The holomorphic equivalence of real hypersurfaces, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), pp. 659-668, Acad. Sci. Fennica, Helsinki, 1980
  89. J. Moser and S. Webster, Normal forms for real surfaces in $C^2$ near complex tangents and hyperbolic surface transformations, Acta Math. 150 (1983), no. 3-4, 255-296
  90. A. Nagel, J. P. Rosay, E. M. Stein, and S. Wainger, Estimates for the Bergman and Szego kernels in $C^2$, Ann. of Math. (2) 129 (1989), no. 1, 113-149
  91. R. Narasimhan, Several Complex Variables, University of Chicago Press, Chicago, IL, 1971
  92. L. Nirenberg, Lectures on linear partial differential equations, Amer. Math. Soc., Providence, RI, 1973
  93. S. Pinchuk, The scaling method and holomorphic mappings, Several complex variables and complex geometry, Part 1 (Santa Cruz, CA, 1989), 151-161, Proc. Sympos. Pure Math., 52, Part 1, Amer. Math. Soc., Providence, RI, 1991
  94. J. P. Rosay, Sur une caracterisation de la boule parmi les domaines de $C^n$ par son groupe d'automorphismes, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 4, ix, 91-97
  95. R. Saerens and W. Zame, The isometry groups of manifolds and the automorphism groups of domains, Trans. Amer. Math. Soc. 301 (1987), no. 1, 413-429
  96. R. Schoen, On the conformal and CR automorphism groups, Geom. Funct. Anal. 5 (1995), no. 2, 464-481
  97. S. Sternberg, Local contractions and a theorem of Poincare, Amer. J. Math. 79 (1957), 809-824
  98. N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japan. J. Math. (N.S.) 2 (1976), no. 1, 131-190
  99. S.Webster, On the Moser normal form at a non-umbilic point, Math. Ann. 233 (1978), no. 2, 97-102
  100. S.Webster, On the proof of Kuranishi's embedding theorem, Ann. Inst. H. Poincare Anal. Non Lineaire 6 (1989), no. 3, 183-207
  101. J. Winkelmann, Realizing connected Lie groups as automorphism groups of complex manifolds, Comment. Math. Helv. 79 (2004), no. 2, 285-299
  102. B. Wong, Characterization of the unit ball in $C^n$ by its automorphism group, Invent. Math. 41 (1977), no. 3, 253-257
  103. H.Wu, Old and new invariant metrics on complex manifolds, Several complex variables (Stockholm, 1987/1988), 640-682, Math. Notes, 38, Princeton Univ. Press, Princeton, NJ, 1993

피인용 문헌

  1. Complete prolongation for infinitesimal automorphisms on almost complex manifolds vol.264, pp.4, 2010,
  2. Gromov hyperbolicity and the Kobayashi metric on convex domains of finite type vol.365, pp.3-4, 2016,
  3. Integrable Submanifolds in Almost Complex Manifolds vol.20, pp.1, 2010,
  4. The automorphism groups of domains in complex space: a survey vol.36, pp.2, 2013,