DOI QR코드

DOI QR Code

STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN QUASI-BANACH SPACES

  • Najati, Abbas (DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCES UNIVERSITY OF MOHAGHEGH ARDABILI) ;
  • Moradlou, Fridoun (FACULTY OF MATHEMATICAL SCIENCES UNIVERSITY OF TABRIZ)
  • Published : 2008.08.31

Abstract

In this paper we establish the general solution and investigate the Hyers-Ulam-Rassias stability of the following functional equation in quasi-Banach spaces. $${\sum\limits_{{{1{\leq}i<j{\leq}4}\limits_{1{\leq}k<l{\leq}4}}\limits_{k,l{\in}I_{ij}}}\;f(x_i+x_j-x_k-x_l)=2\;\sum\limits_{1{\leq}i<j{\leq}4}}\;f(x_i-x_j)$$ where $I_{ij}$={1, 2, 3, 4}\backslash${i, j} for all $1{\leq}i<j{\leq}4$. The concept of Hyers-Ulam-Rassias stability originated from Th. M. Rassias' stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc.

References

  1. J. Aczel and J. Dhombres, Functional Equations in Several Variables, With applications to mathematics, information theory and to the natural and social sciences. Encyclopedia of Mathematics and its Applications, 31. Cambridge University Press, Cambridge, 1989
  2. D. Amir, Characterizations of inner product spaces, Operator Theory: Advances and Applications, 20. Birkhauser Verlag, Basel, 1986
  3. Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis. Vol. 1, American Mathematical Society Colloquium Publications, 48. American Mathematical Society, Providence, RI, 2000
  4. P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), no. 1-2, 76-86 https://doi.org/10.1007/BF02192660
  5. S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64 https://doi.org/10.1007/BF02941618
  6. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436 https://doi.org/10.1006/jmaa.1994.1211
  7. A. Grabiec, The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math. Debrecen 48 (1996), no. 3-4, 217-235
  8. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224
  9. P. Jordan and J. von Neumann, On inner products in linear, metric spaces, Ann. of Math. (2) 36 (1935), no. 3, 719-723 https://doi.org/10.2307/1968653
  10. K. Jun and Y. Lee, On the Hyers-Ulam-Rassias stability of a Pexiderized quadratic inequality, Math. Inequal. Appl. 4 (2001), no. 1, 93-118
  11. Pl. Kannappan, Quadratic functional equation and inner product spaces, Results Math. 27 (1995), no. 3-4, 368-372 https://doi.org/10.1007/BF03322841
  12. A. Najati and M. B. Moghimi, Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl. 337 (2008), no. 1, 399-415 https://doi.org/10.1016/j.jmaa.2007.03.104
  13. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300
  14. S. Rolewicz, Metric Linear Spaces, PWN?Polish Scientific Publishers, Warsaw; D. Reidel Publishing Co., Dordrecht, 1984
  15. F. Skof, Local properties and approximation of operators, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129 https://doi.org/10.1007/BF02924890
  16. S. M. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, no. 8 Interscience Publishers, New York-London, 1960

Cited by

  1. Homomorphisms in quasi-Banach algebras associated with a Pexiderized Cauchy-Jensen functional equation vol.25, pp.9, 2009, https://doi.org/10.1007/s10114-009-7648-z
  2. On Approximate Additive–Quartic and Quadratic–Cubic Functional Equations in Two Variables on Abelian Groups vol.58, pp.1-2, 2010, https://doi.org/10.1007/s00025-010-0018-4
  3. Approximate Behavior of Bi-Quadratic Mappings in Quasinormed Spaces vol.2010, pp.1, 2010, https://doi.org/10.1155/2010/472721
  4. Generalized Stability of Euler-Lagrange Quadratic Functional Equation vol.2012, 2012, https://doi.org/10.1155/2012/219435
  5. On the stability of a functional equation deriving from additive and quadratic functions vol.2012, pp.1, 2012, https://doi.org/10.1186/1687-1847-2012-98
  6. Approximate Cauchy functional inequality in quasi-Banach spaces vol.2011, pp.1, 2011, https://doi.org/10.1186/1029-242X-2011-102