DOI QR코드

DOI QR Code

ON ω-CHEBYSHEV SUBSPACES IN BANACH SPACES

  • Published : 2008.08.31

Abstract

The purpose of this paper is to introduce and discuss the concept of ${\omega}$-Chebyshev subspaces in Banach spaces. The concept of quasi Chebyshev in Banach space is defined. We show that ${\omega}$-Chebyshevity of subspaces are a new class in approximation theory. In this paper, also we consider orthogonality in normed spaces.

References

  1. D. Narayana and T. S. S. R. K. Rao, Some remarks on quasi-Chebyshev subspaces, J. Math. Anal. Appl. 321 (2006), no. 1, 193-197 https://doi.org/10.1016/j.jmaa.2005.08.027
  2. C. Franchetti and M. Furi, Some characteristic properties of real Hilbert spaces, Rev. Roumaine Math. Pures. Appl. 17 (1972), 1045-1048
  3. H. Mazaheri and F. M. Maalek Ghaini, Quasi-orthogonality of the best approximant sets, Nonlinear Anal. 65 (2006), no. 3, 534-537 https://doi.org/10.1016/j.na.2005.09.026
  4. H. Mazaheri and S. M. Vaezpour, Orthogonality and $\epsilon$-orthogonality in Banach spaces, Aust. J. Math. ASnal. Appl. 2 (2005) no. 1, Art. 10, 1-5
  5. P. L. Papini and I. Singer, Best coapproximation in normed linear spaces, Monatsh. Math. 88 (1979), no. 1, 27-44 https://doi.org/10.1007/BF01305855
  6. I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, New York-Berlin, 1970

Cited by

  1. On simultaneous weakly-Chebyshev subspaces vol.27, pp.2, 2011, https://doi.org/10.1007/s10496-011-0117-4