Bulletin of the Korean Mathematical Society (대한수학회보)
- Volume 45 Issue 3
- /
- Pages.601-606
- /
- 2008
- /
- 1015-8634(pISSN)
- /
- 2234-3016(eISSN)
DOI QR Code
ON ω-CHEBYSHEV SUBSPACES IN BANACH SPACES
- Shams, Maram (DEPARTMENT OF MATHEMATICS YAZD UNIVERSITY) ;
- Mazaheri, Hamid (DEPARTMENT OF MATHEMATICS YAZD UNIVERSITY) ;
- Vaezpour, Sayed Mansour (DEPARTMENT OF MATHEMATICS YAZD UNIVERSITY)
- Published : 2008.08.31
Abstract
The purpose of this paper is to introduce and discuss the concept of
File
References
- D. Narayana and T. S. S. R. K. Rao, Some remarks on quasi-Chebyshev subspaces, J. Math. Anal. Appl. 321 (2006), no. 1, 193-197 https://doi.org/10.1016/j.jmaa.2005.08.027
- C. Franchetti and M. Furi, Some characteristic properties of real Hilbert spaces, Rev. Roumaine Math. Pures. Appl. 17 (1972), 1045-1048
- H. Mazaheri and F. M. Maalek Ghaini, Quasi-orthogonality of the best approximant sets, Nonlinear Anal. 65 (2006), no. 3, 534-537 https://doi.org/10.1016/j.na.2005.09.026
-
H. Mazaheri and S. M. Vaezpour, Orthogonality and
$\epsilon$ -orthogonality in Banach spaces, Aust. J. Math. ASnal. Appl. 2 (2005) no. 1, Art. 10, 1-5 - P. L. Papini and I. Singer, Best coapproximation in normed linear spaces, Monatsh. Math. 88 (1979), no. 1, 27-44 https://doi.org/10.1007/BF01305855
- I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, New York-Berlin, 1970
Cited by
- On simultaneous weakly-Chebyshev subspaces vol.27, pp.2, 2011, https://doi.org/10.1007/s10496-011-0117-4