개질에 따른 활성탄의 표면특성과 Benzene 증기의 흡착속도 비교

DOI QR코드

DOI QR Code

이송우;감상규;이민규
Lee, Song-Woo;Kam, Sang-Kyu;Lee, Min-Gyu

  • 발행 : 2008.08.30

초록

The surface properties and adsorption rates of activated carbon modified with acid and base were compared. The distribution ratio of C and C-H on the surface of activated carbon were decreased by modification with acid and base, but the distribution ratio of C-O, C=O, and O=C-O were increased. Base modification damaged the surface of activated carbon more than acid modification, it caused the effect of 6 percent increments of surface area. Adsorption rate model was more suitable to second order equation than first order equation. Adsorption rate was controlled by adsorption in pore better than in surface.

키워드

Activated carbon;Surface chemistry;Adsorption rate;Modification

참고문헌

  1. Lee S. W., Kwon J. H., Kang J. H., Na Y. S., An C. D., Yoon Y. S., Song S. K., 2006, Adsorption characteristics of toluene vapor according to pore size distribution of activated carbon, J. Environ. Sci., 15(7), 695-699 https://doi.org/10.5322/JES.2006.15.7.695
  2. Lee S. W., Moon J. C., Lee C. H., Ryu D. C., Choi D. H., Ryu B. S., Song S. K., 2001, Analysis of pore characteristics between commercial activated carbons and domestic anthracite-based activated carbon, J. Korean Soc. Environ. Eng., 23(7), 1211-1218
  3. Kim T. J., Seo S. G., Kim S. C., 2005, Removal of odor-containing sulfur compound, methyl mercaptan using modified activated carbon with various acidic chemicals, J. Korean Soc. Atmosph. Environ., 21(2), 155-160
  4. Lee S. W., Lee M. G., Park S. B., 2008, Comparison of surface characteristics and adsorption characteristics of activated carbons changed by acid and base modification, J. Environ. Sci., 17(5), 565-571 https://doi.org/10.5322/JES.2008.17.5.565
  5. Lee S. W., Bae S. K, Kwon J. H., Na Y. S., An C. D., Yoon Y. S., Song S. K., 2005, Correlations between pore structure of activated carbon and adsorption characteristics of acetone vapor, J. Korean Soc. Environ. Engrs, 27(6), 620-625
  6. Lee M. G., Lee S. W., Lee S. H., 2006, Comparison of vapor adsorption characteristics of acetone and toluene based on polarity in activated carbon fixed-bed reactor, Korean J. Chem. Eng., 23(5), 773-778 https://doi.org/10.1007/BF02705926
  7. Lee S. W., Kam S. K., Lee M. G., 2007, Comparison of breakthrough characteristics for binary vapors composed of acetone and toluene based on adsorption intensity in activated carbon fixed-bed reactor, J. Ind. Eng. Chem., 13(6), 911-916
  8. Kim H. W., Lee S. W., Lee M. G., Cheon J. K., 2007, Variations of equilibrium adsorption capacities according to type and mixing fraction of binary mixed gas on activated carbon fixed-bed, J. Environ. Sci., 16(10), 1197-1202 https://doi.org/10.5322/JES.2007.16.10.1197
  9. Cheung T. T. P., 1984, X-ray photoemission of polynuclear aromatic carbon, J. Appl. Phys., 55(5), 1388-1393 https://doi.org/10.1063/1.333229
  10. Moreno-Castilla C., Lopez-Ramon M.V., Carrasco-Marin F., 2000, Changes in surface chemistry of activated carbons by wet oxidation, Carbon, 38, 1995-2001 https://doi.org/10.1016/S0008-6223(00)00048-8
  11. Darmstadt H., Roy C., Kaliaguine S., 1994, ESCA Characterization of commercial carbon blacks and of carbon blacks from vacuum pyrolysis of used tires, Carbon, 32(8), 1399-1406 https://doi.org/10.1016/0008-6223(94)90132-5
  12. Desimoni E., Casella G. I., Salvi A. M., 1992a, XPS/XAES study of carbon fibers during thermal annealing under UHV conditions, Carbon, 30(4), 521-526 https://doi.org/10.1016/0008-6223(92)90170-2
  13. Desimoni E., Casella G. I., Salvi A. M., Cataldi T. R. I., Morone A., 1992b, XPS Investigation of ultrahigh- vacuum storage effects on carbon fiber surfaces, Carbon, 30(4), 527-531 https://doi.org/10.1016/0008-6223(92)90171-R
  14. Zielke U., Huttinger K. J., Hoffman W. P., 1996, Surface-oxidized carbon fibers: I. Surface structure and chemistry, Carbon, 34(8), 983-998 https://doi.org/10.1016/0008-6223(96)00032-2
  15. Tutem E., Apak R., Unal G. F., 1998, Adsorptive removal of chloro-phenols from water by bituminous shale, Water Res., 32, 2315-2324 https://doi.org/10.1016/S0043-1354(97)00476-4
  16. Lagergren S., 1898, About the theory of so-called adsorption of soluble substances, Kung Sven Veten Hand, 24, 1-39
  17. Ho Y. S., McKay G., 1999, Pseudo-second order model for sorption processes. Process Biochem., 34, 451-465 https://doi.org/10.1016/S0032-9592(98)00112-5
  18. Ho Y. S., McKay G., 2000, The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Water Res., 34, 735-742 https://doi.org/10.1016/S0043-1354(99)00232-8
  19. McKay G,, 1983, Adsorption of dye stuffs from aqueous solution using activated carbon. III. Intraparticle diffusion processes, J. Chem. Technol. Biotechnol., 33A, 196-204
  20. Moon H., Lee W. K., 1983, Intraparticle diffusion in liquid-phase adsorption of phenol with activated carbon in finite batch adsorber. J. Colloid Interface Sci., 96, 162-170 https://doi.org/10.1016/0021-9797(83)90018-8
  21. Weber W. J., Morris C. J., 1982, In Proceedings of the 1st International Conference on Water Pollution Research, Pergamon: New York, 231pp
  22. Crank J., 1975, The Mathmatics of Diffusion, Clarendon Press, Oxford, London, 349pp
  23. Weber W. T. Jr., 1972, Physicochemical Processes for Water Quality Control, Wiley, New York