DOI QR코드

DOI QR Code

Syntheses and Properties of ZnS:Mn/ZnS Core-Shell Quantum Dots Prepared via Thermal Decomposition Reactions of Organometallic Precursors at Various Reaction Temperatures

다양한 온도 조건에서의 ZnS:Mn/ZnS 코어-쉘 양자점의 합성 및 광 특성에 관한 연구

  • Lee, Jae-Woog (Department of Chemistry, Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Hwang, Cheong-Soo (Department of Chemistry, Institute of Nanosensor and Biotechnology, Dankook University)
  • 이재욱 (단국대학교 자연과학대학 화학과, 나노센서 바이오텍 연구소) ;
  • 황청수 (단국대학교 자연과학대학 화학과, 나노센서 바이오텍 연구소)
  • Published : 2009.12.20

Abstract

ZnS:Mn/ZnS core-shell quantum dots (QDs), were synthesized via a thermal decomposition reaction of organometallic precursors in a hot solvent mixture. The synthetic conditions of the quantum dots were monitored at various reaction temperatures for the core formation, while the shell formation temperature was fixed at 135$^{\circ}C$. The obtained colloidal nanocrystals at corresponding temperatures were characterized by UV-Vis, solution photoluminescence (PL) spectroscopies, and further obtained powders were characterized by XRD, HR-TEM, and EDXS analyses. The synthetic temperature condition to obtain the best PL emission intensity for the core-shell QD was 135$^{\circ}C$, for both core and shell formation. At this temperature, solution PL spectrum showed a narrow emission peak at 583 nm with a relative PL quantum efficiency of 42.15%. In addition, the measured spherical particle sizes for the ZnS:Mn/ZnS nanocrystals via HR-TEM were in the range of 4.0 to 5.4 nm, while ellipsoidal particles were obtained at 150$^{\circ}C$.

Keywords

Core-shell quantum dot;ZnS:Mn/ZnS nanocrystal;Organometallic route

References

  1. Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226 https://doi.org/10.1021/jp9535506
  2. Zhuang, J.; Yang, W.; Zhang, X. J. Mater. Chem. 2003, 13, 1853 https://doi.org/10.1039/b303287f
  3. Alivisatos, A. P. Science. 1996, 271, 933 https://doi.org/10.1126/science.271.5251.933
  4. Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706 https://doi.org/10.1021/ja00072a025
  5. Milliron, D. J.; Alivisatos, A. P.; Pitois, C.; Edder, C.; Frechet, J. M. J. Adv. Mater. 2003, 15, 58 https://doi.org/10.1002/adma.200390011
  6. Hwang, C. S.; Cho, I. H. Bull. Kor. Chem. Soc. 2005, 26, 1776 https://doi.org/10.5012/bkcs.2005.26.11.1776
  7. Chun, J. W.; Jun, Y. W.; Jang, J. T. Bull. Kor. Chem. Soc. 2006, 27, 961 https://doi.org/10.5012/bkcs.2006.27.7.961
  8. Bruchez, S. Jr.; Moronne, M.; Gin, P.; Alivisatos, A. P. Science 1998, 281, 2013 https://doi.org/10.1126/science.281.5385.2013
  9. Hwang, C. S.; Cho, I. H. Bull. Kor. Chem. Soc. 2005, 26, 1776 https://doi.org/10.5012/bkcs.2005.26.11.1776
  10. Cao, L.; Zhang, J.; Ren, S.; Huan, S. Appl. Phys. Lett. 2002, 80, 4300 https://doi.org/10.1063/1.1483113
  11. Williams, A. T. R.; Winfield, S. A.; Miller, J. N.; Analyst 1983, 108, 1067 https://doi.org/10.1039/an9830801067
  12. Chun, J. W.; Jun, Y. W.; Jang, J. T. Bull. Kor. Chem. Soc. 2006, 27, 961 https://doi.org/10.5012/bkcs.2006.27.7.961
  13. Judge, T. R.; Bryanston-cross, P. J.; Opt. Lasers. Eng. 1994, 21, 199 https://doi.org/10.1016/0143-8166(94)90073-6
  14. Bhargava, R. N. J. Lumin. 1996, 70, 85 https://doi.org/10.1016/0022-2313(96)00046-4
  15. Bhargava, R. N.; Gallaher, D. Phys. Rev. Lett. 1994, 72, 416 https://doi.org/10.1103/PhysRevLett.72.416
  16. Tata, M.; Banerjee, S.; John, V. T.; Waguespack, Y.; Mcpherson, G. Coll. Surf. A Phys. Chem. and Eng. Asp. 1997, 127, 39 https://doi.org/10.1016/S0927-7757(96)03968-4
  17. Zhuang, J.; Zhang, X.; Wang, G.; Li, D.; Yang, W.; Li, T. J. Mater. Chem. 2003, 13, 1853 https://doi.org/10.1039/b303287f
  18. Qu, L.; Peng, X. J. Am. Chem. Soc. 2002, 124, 2049 https://doi.org/10.1021/ja017002j