DOI QR코드

DOI QR Code

Interaction of Proline with Cu+ and Cu2+ Ions in the Gas PhaseGab Yong Lee*Department of Life Chemistry, Catholic University of Daegu, Gyeongsan 712‐702, Korea(Received March 3, 2009)INTRODUCTIONCopper ions are the most important transitionmetals involved in several biological processes ofliving systems, including oxidation, dioxygentransport, and charge transfer.1 The study of interactionsbetween the metal ion and amino acids hasattracted considerable attention from experimental2-6and theoretical6-11 viewpoints. Thermochemicalinformation on interactions between the metal ion and biological

기체상에서 Cu+ 및 Cu2+ 이온과 proline의 상호작용

  • Published : 2009.06.20

Abstract

The structures and metal affinities of the binding configurations of $Cu^{+}$ and $Cu^{2+}$ to proline have been investigated using the hybrid three-parameter Density Functional Theory(DFT/B3LYP). We found that the metal-proline bonding and the energy ordering of several conformers were very different in $Cu^{+}$-proline and $Cu^{2+}$-proline. For $Cu^{+}$-proline, the ground state structure was found to have a bidentated coordination in which $Cu^{+}$ was coordinated to the carbonyl oxygen and imino group nitrogen of neutral proline. On the contrary, the ground state structure of $Cu^{2+}$-proline involves chelation between the two oxygens of the carboxylate group in a zwitterionic proline. The metal ion affinity of proline of the most stable $Cu^{+}$-proline complex was calculated as 76.0 kcal/mol at 6-311++G(d,p) level, whereas the $Cu^{2+}$ ion affinity of proline was calculated as 258.5 kcal/mol.

Keywords

Copper;Proline;Metal ion affinity;Gas phase;DFT calculation

References

  1. Lippard, S. J.; Berg, J. M. Principles of Bioinorganic Chemistry; Univesity Science Books: Mill Valley. CA. 1994
  2. Grese, R. P.; Cerny, R. L.; Gross, M. L. J. Am. Chem. Soc. 1989, 111, 2865
  3. Hu, P.; Gross, M. L. J. Am. Chem. Soc. 1992, 114, 9153 https://doi.org/10.1021/ja00049a056
  4. Hu, P.; Gross, M. L. J. Am. Chem. Soc. 1993, 115, 8821 https://doi.org/10.1021/ja00072a041
  5. More, M. B.; Ray, D.; Amentrout, P. B. J. Phys. Chem. A 1997, 101, 4254 https://doi.org/10.1021/jp964015o
  6. Lee, S.; Kim. H. S.; Beauchamp, J. J. Am. Chem. Soc. 1998, 120, 3188 https://doi.org/10.1021/ja973467r
  7. Cerda, B. A.; Wesdemiotis, C. J. Am. Chem. Soc. 1996, 118, 11884 https://doi.org/10.1021/ja9613421
  8. Cerda, B. A.; Hoyau, S.; Ohanessian, G.; Wesdemiotis, C. J. Am. Chem. Soc. 1998, 120, 2437 https://doi.org/10.1021/ja972417j
  9. Hoyau, S.; Ohanessian, G. Chem. Eur. J. 1998, 4, 1561 https://doi.org/10.1002/(SICI)1521-3765(19980807)4:8<1561::AID-CHEM1561>3.0.CO;2-Z
  10. Luna, A.; Morizur, J.-P.; Tortajada, J.; Alcami, M.; Mo, O., Yanez, M. J. Phys. Chem. A 1998, 102, 4652 https://doi.org/10.1021/jp980629c
  11. Sponer, J.; Burda, J. V.; Sobat, M.; Leszczynski, J.; Hobza, P. J. Phys. Chem. A 1998, 102, 5951 https://doi.org/10.1021/jp980769m
  12. Liedl, K. R.; Rode, B. M. Chem. Phys. Lett. 1992, 197, 181 https://doi.org/10.1016/0009-2614(92)86044-I
  13. Blomberg, M. R. A.; Siegbahn, P. E. M.; Styring, S.; Babcock, G. T.; Akemark, B.; Korall, P. J. Am. Chem. Soc. 1997, 119, 8285 https://doi.org/10.1021/ja9642323
  14. Marino, T.; Russo, N.; Tocci, E.; Toscano, M. Int. J. Quan. Chem. 2001, 84, 264 https://doi.org/10.1002/qua.1330
  15. Cerda, B. A.; Wesdemiotis, C. J. Am. Chem. Soc. 1995, 117, 9734 https://doi.org/10.1021/ja00143a017
  16. Hoyau, S.; Ohanessian, G. J. Am. Chem. Soc. 1997, 119, 2016 https://doi.org/10.1021/ja963432b
  17. Remko, M.; Fitz. D.; Rode, B. M. J. Phys. Chem. A 2008, 112, 7652 https://doi.org/10.1021/jp801418h
  18. Hoyau, S.; Ohanessian, G. C. R. Acad. Sci. Paris Serie II c 1998, 1, 795
  19. Marino, T.; Russo, N.; Toscano, M. J. Mass. Spectrom. 2002, 37, 786 https://doi.org/10.1002/jms.331
  20. Bertrán, J.; Rodriguez-Santiago, L.; Sodupe, M. J. Phys. Chem. B 1999, 103, 2310 https://doi.org/10.1021/jp984534m
  21. Becke, A. D. J. Chem. Phys. 1993, 98, 1372 https://doi.org/10.1063/1.464304
  22. Becke, A. D. J. Chem. Phys. 1993, 98, 5648 https://doi.org/10.1063/1.464913
  23. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1993, 48, 4978
  24. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, Jr., T.; Kudin, K. N.; Burant, J. C.; Millam, J, M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Peterson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dennenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A. Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A. Gaussian 03, Revision B.05; Gaussian, Inc.; Pittsburgh PA. 2003
  25. Blomberg, M. R. A.; Siegbahn, P. E. M.; Svensson, M. J. Phys. Chem. A 1996, 104, 9546 https://doi.org/10.1063/1.471673
  26. Holthausen, M. C.; Mohr, M.; Koch, W. Phys. Lett. 1995, 240, 245
  27. Rodriguez-Santiago, L.; Sodupe, M.; Branchadell, V. J. Chem. Phys. 1996, 105, 9966 https://doi.org/10.1063/1.472828
  28. Lesarri, A.; Mata, S.; Cocinero, E. J.; Blanco. S.; Lopez, J. C.; Alonso, J. L. Angew. Chem. Int. Ed. 2002, 41, 4673 https://doi.org/10.1002/anie.200290012
  29. DeTar, D. F.; Luthra, N. P. J. Am. Chem. Soc. 1977, 99, 1232 https://doi.org/10.1021/ja00446a040
  30. DeTar, D. F.; Luthra, N. P. J. Org. Chem. 1979, 44, 3299 https://doi.org/10.1021/jo01333a005
  31. Milner-White, E. J.; Bell, L. H.; Maccallum, P. H. J. Mol. Biol. 1992, 228, 725 https://doi.org/10.1016/0022-2836(92)90859-I
  32. Ramek, M; Kelterer, A.-M.; Nikolic, S. Int. J. Quan. Chem. 1997, 65, 1033 https://doi.org/10.1002/(SICI)1097-461X(1997)65:6<1033::AID-QUA2>3.0.CO;2-W
  33. Stepanian, S. G.; Reva, I. D.; Radchenko, E. D.; Adamowicz, L. J. Phys. Chem. A. 2001, 105, 10664 https://doi.org/10.1021/jp011708i
  34. Czinki, E.; Csaszar, A. G. Chem. Eur. J. 2003, 9, 1008 https://doi.org/10.1002/chem.200390103
  35. Hu, P.; Loo, J. A. J. Am. Chem. Soc. 1995, 117, 11314 https://doi.org/10.1021/ja00150a032
  36. Gatlin, C. L.; Turecek, F.; Vaisar, T. J. Am. Chem. Soc. 1995, 117, 3637 https://doi.org/10.1021/ja00117a043
  37. Marino, T.; Russo, N.; Toscano, M. J. Phys. Chem. B. 2003, 107, 2588 https://doi.org/10.1021/jp027063j
  38. Fleming, G. J.; McGill, P. R.; Idriss, H. J. Phys. Org. Chem. 2007, 20, 1032 https://doi.org/10.1002/poc.1249

Cited by

  1. On the stability of [Pb(Proline)]2+ complexes. Reconciling theory with experiment vol.598, 2014, https://doi.org/10.1016/j.cplett.2014.03.006
  2. Interaction ofl-proline with group IIB (Zn2+, Cd2+, Hg2+) metal cations in the gas and aqueous phases: a quantum computational study vol.94, pp.5, 2016, https://doi.org/10.1139/cjc-2015-0616
  3. The [Cu]-catalyzed SNAR reactions: direct amination of electron deficient aryl halides with sodium azide and the synthesis of arylthioethers under Cu(II)–ascorbate redox system vol.66, pp.38, 2010, https://doi.org/10.1016/j.tet.2010.07.032
  4. An insight into the interaction of L-proline with the transition metal cations Fe2+, Co2+, Ni2+: a gas phase theoretical study vol.22, pp.1, 2016, https://doi.org/10.1007/s00894-015-2865-0