DOI QR코드

DOI QR Code

Spectrophotometric Study of Acidity and Complex Formation of Anti-Inflammatory Drug Piroxicam with Some Transition Metal Ions in Different Methanol/Water Mixtures by Chemometric Methods

Chemometric 방법에 의한 메탄올/물 계에서 전이 금속 이온과 소염제 Piroxicam의 산성도 및 착체 형성에 관한 분광광도법 연구

  • Ghasemi, Jahan B. (Chemistry Department, Faculty of Sciences, K. N. Toosi University of Technology) ;
  • Jalalvand, Alireza (Department of Analytical Chemistry, Faculty of Chemistry, Razi University)
  • Published : 2009.12.20

Abstract

The complex formation of anti-inflamatory drug piroxicam (PX, 4-hydroxy-2-methyl-N-2--pridyl-2H-1,2-benzothiazine-3-carboxadiamide-1,1-dioxide) with transition metal ions Co(II), Ni(II), Cu(II) and Zn(II) in methanol(MeOH)/water binary mixtures were studied by spectrophotometric method at 25$^{\circ}C$, constant pH = 5.0 and I = 0.1 M. The computer program SQUAD was used to extract the desired information from the spectral data. The outputs of the fitting processes were stability constants, standard deviations of the estimated stability constants, concentration distribution diagrams and spectral profiles of all species. The sequence of the stability constants of PX complexes with Co(II), Ni(II), Cu(II) and Zn(II) follow the Cu(II) > Co(II) > Ni(II) ${\approx}$ Zn(II) order. This may be due to different geometry tendencies of these metal ions. The acidity constants of the PX were also determined under above condition from its absorption spectra at different pH values. The computer program DATAN was used for determination of acidity constants of PX. The validity of the obtained acidity constants was checked by a well known computer program SPECFIT/32. The effects of the different parameters like solvent nature, cations characteristics on the stability and acidity constants were thoroughly discussed.

Keywords

Piroxicam;Spectrophotometric;SQUAD;DATAN;SPECFIT/32

References

  1. Lombardino, J. G. Eur. J. Reumatol. Inflam. 1983, 6, 24-35
  2. Skoog, D. A.; Holler, F. J.; Nieman, T. A. Principles of Instrumental Analysis; Saunders Sunburst Series, 1998
  3. Dendrinou-Samara, C.; Tsotsou, G.; Raptopoulou, C. P.; Kortsaris, A. D.; Kyriakidis, D. P. J. Inorg. Biochem. 1998, 71, 171-179 https://doi.org/10.1016/S0162-0134(98)10051-X
  4. Greenaway, F. T.; Riviere, E.; Girerd, J. J.; Labouze, X.; Morgant, G.; Viossat, B.; Daran, J. C.; Roch Arveiller, M. N.; Dung, H. J. Inorg. Biochem. 1999, 76, 19-27 https://doi.org/10.1016/S0162-0134(99)00104-X
  5. Moncol, J.; Kalinakova, B.; Svorec, J.; Kleinova, M.; Koman, M.; Hudecova, D.; Melnik, M.; Mazur, M.; Vako, M. Inorg. Chim. Acta. 2004, 357, 3211-3222 https://doi.org/10.1016/j.ica.2004.03.043
  6. Dutta, S.; Padhye, S.; McKee, V. Inorg. Chem. Commun. 2004, 7, 1071-1074 https://doi.org/10.1016/j.inoche.2004.07.022
  7. Chiu, L. C. M.; Tong, K. F.; Ooi, V. E. C. Oncol. Rep. 2004, 11, 225-230
  8. Crouch, R. K.; Kensler, T. W.; Oberley, L. W.; Sorenson, J. R. J.; Karlin, K. D.; Zubieta, J. Biological and Inorganic Copper Chemistry; Adenine Press: Guilderland, New York, 1985
  9. Weder, J. E.; Dillon, C. T.; Hambley, T. W.; Kennedy, B. J.; Lay, P. A.; Biffin, J. R.; Regtop, H. L.; Davies, N. M. J. Coord. Chem. Rev. 2002, 232, 95-126 https://doi.org/10.1016/S0010-8545(02)00086-3
  10. Bordner, J.; Hammen, P. D.; Whipple, E. B. J. Am. Chem. Soc. 1989, 111, 6572-6578 https://doi.org/10.1021/ja00199a015
  11. Pollard, M.; Luckert, P. H. J. Cancer. Lett. 1984, 25, 117-121 https://doi.org/10.1016/S0304-3835(84)80035-X
  12. Earnest, D. L.; Alberts, D. S.; Hixon, L. J. J. Cell. Biochem. 1997, 161, 156-166
  13. Waddell, W. R. J. Clin. Sci. 1998, 95, 385-388 https://doi.org/10.1042/CS19970251
  14. Ding, H. M.; Han, C. H.; Gibson-D'Amboise, R.; Steele, V. E.; D'Amboise, S. M. Int. J. Cancer. 2003, 107, 830-836 https://doi.org/10.1002/ijc.11499
  15. Mirshafiey, A.; Vaezzadeh, F.; Khorramizadeh, M. R.; Saadat, F. J. Tissue. React. 2004, 26, 1-7
  16. Florey, K.; Analytical Profiles of Drug Substances; Scientific Press. 1986
  17. Elliott, C. J.; O'Connor, R. A.; Heenan, M. M.; Coyle, I. M. S.; Cleary, K.; Kavanagh, S.; Verhaegen, C. M.; OLoughlin, R.; NicAmhlaoibh, M. Eur. J. Cancer. 1998, 34, 1250-1254 https://doi.org/10.1016/S0959-8049(98)00045-8
  18. Williamson, C. M. Curr. Med. Res. Opin. 1983, 8, 622-625 https://doi.org/10.1185/03007998309109808
  19. Vacca; Nativi, A.; Cacciarini, C.; Pergoli, M.; Roelens, R. J. Am. Chem. Soc. 2004, 126, 16456-16465 https://doi.org/10.1021/ja045813s
  20. Bjerrum, J. Metal-ammine formation in aqueous solution; Copenhagen Press: Haase, 1941
  21. Arena, G.; Contino, A.; Longo, E.; Sciotto, D.; Spoto, G. J. Chem. Soc. Perkin Trans. 2001, 2, 2287-2291 https://doi.org/10.1039/b107025h
  22. Almasifar, D.; Forghaniha, F.; Khojasteh, Z.; Ghasemi, J.; Shargi, H.; Shamsipur, M. J. Chem. Eng. Data. 1997, 42, 1212 https://doi.org/10.1021/je970091o
  23. Shamsipur, M.; Ghasemi, J.; Tamaddon, F.; Shargi, H. Talanta. 1992, 40, 697 https://doi.org/10.1016/0039-9140(93)80281-U
  24. Dawies, C. W. Electrolytic Dissociation; Butterworths Press, London, 1962
  25. Palit, S. R. Ind. Eng. Chem. Anal. Ed. 1946, 18, 246 https://doi.org/10.1021/i560152a007
  26. Chmurzynski, L.; Warnke, Z. Aust. J. Chem. 1993, 46, 185 https://doi.org/10.1071/CH9930185
  27. Leggett, D. J.; McBryde, W. A. E. Anal. Chem. 1975, 47, 1065 https://doi.org/10.1021/ac60357a046
  28. Leggett, D. J. Anal. Chem. 1977, 49, 276 https://doi.org/10.1021/ac50010a024
  29. Havel, J.; Meloun, M.; Leggett, D. J. Computation Methods for the Determination of Formation Constants; Plenum Press: New York, 1985
  30. Gammp, H.; Maeder, M.; Meyer, Ch. J.; Zuberbuhler, A. D. Talanta. 1985, 95 https://doi.org/10.1016/0039-9140(85)80035-7
  31. Gammp, H.; Maeder, M.; Meyer, Ch. J.; Zuberbuhler, A. D. Talanta. 1985, 32, 257 https://doi.org/10.1016/0039-9140(85)80077-1
  32. (a) Gampp, H.; Maeder, M.; Meyer, Ch. J.; Zuberbuhler, A. Talanta. 1985, 32, 1133. (Please refer to the other references for details:no.32) https://doi.org/10.1016/0039-9140(86)80233-8
  33. Meader, M. Anal. Chem. 1987, 59, 527 https://doi.org/10.1021/ac00130a035
  34. Lorber, A. Anal. Chem. 1984, 56, 1004 https://doi.org/10.1021/ac00270a031
  35. Golub, G. H.; Vanloan, F. Matrix Computations; John Hopkins University Press: Baitimore, 1983
  36. Maeder, M.; Zuberbuhler, A. D. Anal. Chem. 1990, 52, 2220 https://doi.org/10.1021/ac00219a013
  37. Nelder, J. A.; Mead, R. J. Comput. 1965, 7, 308
  38. Kubista, M. Chemom. Intell. Lab. Syst. 1990, 7, 273 https://doi.org/10.1016/0169-7439(90)80116-N
  39. Scarminio, I.; Kubista, M. Anal. Chem. 1993, 65, 409 https://doi.org/10.1021/ac00052a017
  40. Kubista, M.; Nygren, J.; Elbergali, A.; Sjoback, R.; Crit, Rev. Anal. Chem. 1999, 29, 1 https://doi.org/10.1080/10408349891199275
  41. Kubista, M.; Sjoback, R.; Albinsson, B. Anal. Chem. 1993, 65, 994 https://doi.org/10.1021/ac00056a008
  42. Fisher, R.; Mackenzie, W. J. Agric. Sci. 1923, 13, 311 https://doi.org/10.1017/S0021859600003592
  43. Wold, H.; Daved, F. Research Papers in Statistics; Wiley Press: New York, 1966
  44. Mardia, K. V. Multivariate Analysis; Academic Press: London, 1979
  45. Douheret, G. Bull. Soc. Chim. Fr. 1968, 3122-3131
  46. Yoon, M.; Kim, Y. H. Bull. Korean Chem. Soc. 1989, 10, 434-437
  47. Gutmann, V. Coordination Chemistry in Nonaqueous Solutions; Springer Press: New York. 1960
  48. Erlich, P. H.; Popov, A. I. J. Am. Chem. Soc. 1971, 93, 5620 https://doi.org/10.1021/ja00751a005
  49. Almasifar, D.; Forghaniha, F.; Khojasteh, Z.; Ghasemi, J.; Shargi, H.; Shamsipur, M. J. Chem. Eng. Data. 1997, 42, 1212 https://doi.org/10.1021/je970091o
  50. Shamsipur, M.; Ghasemi, J.; Tamaddon, F.; Shargi, H. Talanta. 1992, 40, 697 https://doi.org/10.1016/0039-9140(93)80281-U
  51. Zayed, M. A.; Nour El-Dien, F. A.; Mohamed, G. G.; Gamel, Nadia E. A. El. Spectrochim. Acta. Part A. 2004, 60, 2843-2852 https://doi.org/10.1016/j.saa.2003.12.051
  52. (b) Gampp, H.; Maeder, M.; Meyer, Ch. J.; Zuberbuhler, A. Talanta. 1986, 33, 943. (The reference is seperated at no.32) https://doi.org/10.1016/0039-9140(86)80233-8