DOI QR코드

DOI QR Code

Theoretical Calculations of Metol as Corrosion Inhibitor of Steel

강철 부식 방지제인 메톨에 대한 이론적 계산

  • Gece, Gokhan (Department of Physical Chemistry, Faculty of Science, Ankara University)
  • Published : 2009.12.20

Abstract

Described here for the first time is an investigation on geometrical and electronic molecular structure of metol (N-methyl-p-aminophenol sulphate) as corrosion inhibitor of steel using density functional theory (DFT) calculations. Quantum chemical parameters such as highest occupied molecular orbital energy (EHOMO), lowest unoccupied molecular orbital energy (ELUMO), energy gap ((${\Delta}E$), Mulliken charges (($q_M$) and natural atomic (($q_n$) charge have been calculated both for gas and aqueous phases by using B3LYP/6-31G+(d,p) basis set. The relation between the inhibition efficiency and quantum chemical parameters have been discussed in order to elucidate the inhibition mechanism of the title compound.

Keywords

Metol;Corrosion;Inhibitor;Density functional theory

References

  1. Uhlig, H. H.; Revie, R. W. Corrosion and Corrosion Control; Wiley & Sons: New York, 1985
  2. Jones, D. A. Principles and Prevention of Corrosion; Macmillan: New York, 1992
  3. Sanyal, B. Prog. Org. Coat. 1981, 9(2), 165 https://doi.org/10.1016/0033-0655(81)80009-X
  4. Henney, K.; Dudley, B. Handbook of Photography; Whittlesey House: New York, 1939
  5. Lunar, L.; Sicilia, D.; Rubio, S.; Perez-Bendito, D.; Nickel, U. Water Res. 2000, 34, 1791 https://doi.org/10.1016/S0043-1354(99)00339-5
  6. Cekic, S. D.; Filik, H.; Apak, R. J. Analytical Chem. 2005, 60, 1019 https://doi.org/10.1007/s10809-005-0230-7
  7. Chu, Q.; Jiang, L.; Tian, X.; Ye, J. Anal. Chim. Acta 2008, 606, 246 https://doi.org/10.1016/j.aca.2007.11.015
  8. Kirk, R.; Othmer, D. Encyclopedia of Chemical Technology; Wiley & Sons: New York, 1994
  9. Praveen, B. M.; Venkatesha, T. V. Int. J. Electrochem. Sci. 2009, 4, 267
  10. Gece, G. Corros. Sci. 2008, 50, 2981 https://doi.org/10.1016/j.corsci.2008.08.043
  11. Lopez, N.; Illas, F. Phys. J. Chem. B 1998, 102, 1430 https://doi.org/10.1021/jp972626q
  12. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785 https://doi.org/10.1103/PhysRevB.37.785
  13. Feng, X. B. Phys. Rev. B 2004, 69, 155107 https://doi.org/10.1103/PhysRevB.69.155107
  14. Mackrodt, W. C.; Middlemiss, D. S.; Owens, T. G. Phys. Rev. B 2004, 69, 115119 https://doi.org/10.1103/PhysRevB.69.115119
  15. Frisch, M. J., et al. Gaussian 03; Gaussian Inc.: Wallingford CT, 2004
  16. Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78, 4066 https://doi.org/10.1063/1.445134
  17. Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833 https://doi.org/10.1063/1.1740588
  18. Forester, A. R.; Wardell, J. L. Rodd's Chemistry of Carbon Compounds; Elsevier Publishing Co.: Amsterdam, 1971
  19. Cavalca, L.; Gasparri, G. F.; Mangia, A.; Pelizzi, G. Acta Cryst. 1970, B26, 498
  20. Yang, J. G.; Pan, F. Y.; Yan, H. Chinese J. Struct. Chem. 2006, 25, 1435
  21. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc. Perkin Trans. II 1987, S1 https://doi.org/10.1039/P298700000S1
  22. Bachrach, S. M. Reviews in Computational Chemistry; VCH: New York, 1994
  23. Reed, A. E.; Weinstock, R. B.; Weinhold, F. A. J. Chem. Phys. 1985, 83, 735 https://doi.org/10.1063/1.449486
  24. Zhang, D. Q.; Cai, Q. R.; Gao, L. X.; Lee, K. Y. Corros. Sci. 2008, 50, 3615 https://doi.org/10.1016/j.corsci.2008.09.007
  25. Eddy, N. O.; Ibok, U. J.; Ebenso, E. E.; El Nemr, A.; El Ashry, E. H. J. Mol. Model. 2009, 15, 1085 https://doi.org/10.1007/s00894-009-0472-7
  26. Cruz, J.; Pandiyan, T.; Garcia-Ochoa, E. J. Electroanal. Chem. 2005, 583, 8 https://doi.org/10.1016/j.jelechem.2005.02.026
  27. Fukui, K.; Yonezawa, T.; Nagata, C.; Shingu, H. J. Chem. Phys. 1954, 22, 1433 https://doi.org/10.1063/1.1740412
  28. Fang, J.; Li, J. J. Mol. Struct. (Theochem) 2002, 593, 179 https://doi.org/10.1016/S0166-1280(02)00316-0
  29. Fouda, A. S.; Abu-Elnader, H. M.; Soliman, M. S. Bull. Korean Chem. Soc. 1986, 7(2), 97
  30. Pang, X.; Hou, B.; Li, W.; Liu, F.; Yu, Z. Chin. J. Chem. Eng. 2007, 15, 909 https://doi.org/10.1016/S1004-9541(08)60024-5
  31. Bouklah, M.; Hammouti, B.; Benkaddour, M.; Benhadda, T. J. Appl. Electrochem. 2005, 35, 1095 https://doi.org/10.1007/s10800-005-9004-z
  32. Martinez, S.; Valek, L.; Stipanovi. Oslakovi., I. J. Electrochem. Soc. 2007, 154, C671 https://doi.org/10.1149/1.2777882
  33. Sahin, M.; Gece, G.; Karc., F.; Bilgic, S. J. Appl. Electrochem. 2008, 38, 809 https://doi.org/10.1007/s10800-008-9517-3
  34. Muller, B.; Shadid, M.; Kinet, G. Corros. Sci. 1999, 30, 1323 https://doi.org/10.1016/S0010-938X(98)00186-3
  35. Hur, E.; Bereket, G.; Duran, B.; Ozdemir, D.; .ahin, Y. Prog. Org. Coat. 2007, 60, 153 https://doi.org/10.1016/j.porgcoat.2007.07.026
  36. Abrahao O. Jr.; Panconato Teixeira, T. S.; Madurro, J. M.; da Hora Machado, A. E.; Brito-Madurro, A. G. J. Mol. Struct. (Theochem) 2009, 913, 28 https://doi.org/10.1016/j.theochem.2009.07.013
  37. Li, Y.; Zhao, P.; Liang, Q.; Hou, B. Appl. Surf. Sci. 2005, 252, 1245 https://doi.org/10.1016/j.apsusc.2005.02.094
  38. Zhao, P.; Liang, Q.; Li, Y. Appl. Surf. Sci. 2005, 252, 1596 https://doi.org/10.1016/j.apsusc.2005.02.121
  39. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899 https://doi.org/10.1021/cr00088a005
  40. Gutowski, M.; Chalasinski, G. J. Chem. Phys. 1993, 98, 4728 https://doi.org/10.1063/1.465106

Cited by

  1. Experimental and theoretical study of the inhibition effects of some Schiff bases as corrosion inhibitors of aluminium in HCl 2011, https://doi.org/10.1002/maco.201106241
  2. A theoretical study of some hydroxamic acids as corrosion inhibitors for carbon steel vol.52, pp.10, 2010, https://doi.org/10.1016/j.corsci.2010.06.005