DOI QR코드

DOI QR Code

mPW1PW91 Calculated Conformational Study of Calix[n]arene (n = 4,5,6): Hydrogen Bond

캘릭스[n]아렌(n = 4,5,6)의 이형체들의 상대적인 안정성과 수소결합에 대한 양자역학적 계산연구

  • 김광호 (중앙대학교 자연과학대학 화학과) ;
  • 최종인 (중앙대학교 자연과학대학 화학과)
  • Published : 2009.12.20

Abstract

We have performed mPW1PW91 calculations to investigate the conformational characteristics and hydrogen bonds of p-tert-butylcalix[4]arene (1), p-tert-butylcalix[5]arene (2), calix[6]arene (3) and p-tertbutylcalix[6]arene (4). The structures of the different conformers of 1-3 were optimized by using mPW1PW91/6-31+G(d,p) method. The relative stability of the four conformers of 1 is in the following order: cone (most stable) > partial-cone > 1,2-alternate > 1,3-alternate. The relative stability of the conformers of 2 is in the following order: cone (most stable) > 1,2-alternate > partial-cone > 1,3-alternate. The relative stability of the various conformers of 3 is in the following order: cone (pinched: most stable) > partial-cone > cone (winged) - 1,2-alternate - 1,2,3-alternate > 1,4-alternate > 1,3-alternate > 1,3,5-alternate. The structures of the various conformers of 4 were optimized by using the mPW1PW91/6-31G(d,p) method followed by single point calculation of mPW1PW91/6-31+G(d,p). The relative stability of the conformers of 4 is in the following order: cone (pinched) > 1,2-alternate > cone (winged) > 1,4-alternate - partial-cone > 1,2,3-alternate > 1,3,5-alternate > 1,3-alternate. The primary factor affecting the relative stabilities of the various conformers of the 1-4 are the number and strength of the intramolecular hydrogen bonds. The hydrogen-bond distances are discussed based on two different calculation methods (B3LYP and mPW1PW91).

Keywords

Calix[n]arene;Conformer;mPW1PW91/6-31+G;Hydrogen bond

References

  1. (a) Mandolini, L.; Ungaro, R. (Eds.), Calixarenes in Action; World Scientific Publishers Co.: Singapore, 2007. (Please refer to the other references for details:no.42~no.45)
  2. (a) Gutsche, C. D. Top. Curr. Chem. 1984, 123, 1. (Please refer to the other references for details:no.46~no.48) https://doi.org/10.1021/ja00167a010
  3. (a) Gutsche, C. D.; Iqbal, M. Org. Syn. 1990, 68, 234. (Please refer to the other references for details:no.1~no.3) https://doi.org/10.1021/ja00007a006
  4. Choe, J.-I.; Lee, S. H.; Oh, D.-S. Chang, S.-K.; Nanbu, S. Bull. Korean Chem. Soc. 2004, 25, 190 https://doi.org/10.5012/bkcs.2004.25.2.190
  5. (a) Harada, T.; Rudzinski J. M.; Shinkai, S. J. Chem. Soc., Perkin Trans. 1992, 2, 2109. (Please refer to the other references for details:no.50~no.55) https://doi.org/10.1016/0040-4020(95)01047-5
  6. (a) Bernardino, R. J. ; Costa Cabral, B. J. J. Phys. Chem. A 1999, 103, 9080. (Please refer to the other references for details:no.56) https://doi.org/10.1021/jp991213h
  7. (a) Kim, K. S.; Suh, S. B.; Kim, J. C.; Hong, B. H.; Lee, E. C.; Yun, S.; Tarakeshwar, P.; Lee, J. Y.; Kim, Y.; Ihm, H.; Kim, H. G.; Lee, J. W.; Kim, J. K.; Lee, H. M.; Kim, D.; Cui, C.; Youn, S. J.; Chung, H. Y.; Choi, H. S.; Lee, C.-W.; Cho, S. J.; Jeong, S.; Cho, J.-H. J. Am. Chem. Soc. 2002, 124, 14268. (Please refer to the other references for details:no.57) https://doi.org/10.1021/ja0259786
  8. Choe, J.-I.; Lee, S. H.; Oh, D.-S. Bull. Korean Chem. Soc. 2004, 25, 55 https://doi.org/10.5012/bkcs.2004.25.1.055
  9. (a) Coruzzi, M.; Andreetti, G. D.; Bocchi, A.; Ungaro, R. J. Chem. Soc., Perkin Trans. 1982, 2, 1133. (Please refer to the other references for details:no.58~no.64)
  10. (a) Ninagawa, A.; Matsuda, H.; Makromol. Chem. Rapid Commun. 1982, 3, 65. (Please refer to the other references for details:no.1~no.3)
  11. van Hoorn, W. P.; van Veggel, F. C. J. M.; Reinhoudt, D. N. J. Org. Chem. 1996, 61, 7180 https://doi.org/10.1021/jo960865o
  12. Atwood, J. L.; Barbour, L. J.; Raston, C. L.; Sudria, I. B. N. Angew. Chem., Int. Ed. 1998, 37, 981 https://doi.org/10.1002/(SICI)1521-3773(19980420)37:7<981::AID-ANIE981>3.0.CO;2-X
  13. Andretti, G. D.; Ugozzoli, F.; Casnati, A.; Ghidini, E.; Pochini, A.; Ungaro, R. Gazz. Chim. Ital. 1989, 119, 47
  14. Halit, M.; Oehler, D.; Perrin, M.; Thozet, A.; Perrin, R.; Vicens, J.; Bourakhoudar, M. J. Inclusion Phenom. 1988, 6, 613 https://doi.org/10.1007/BF00656343
  15. (a) Gutsche, C. D.; Bauer, J. J. Am. Chem. Soc. 1985, 107, 6052. (Please refer to the other references for details:no.69) https://doi.org/10.1016/0924-2031(95)00024-O
  16. Kim, K.; Park, S. J.; Choe, J.-I. Bull. Korean Chem. Soc. 2008, 29, 1893
  17. Kim, K.; Choe, J.-I. Bull. Korean Chem. Soc. 2009, 30, 837 https://doi.org/10.5012/bkcs.2009.30.4.837
  18. (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (Please refer to the other references for details:no.70) https://doi.org/10.1103/PhysRevB.37.785
  19. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623 https://doi.org/10.1021/j100096a001
  20. Feller, D. J. Phys. Chem. A 1999, 103, 7558 https://doi.org/10.1021/jp991932w
  21. van Mourik, T. Chem. Phys. 2004, 304, 317 https://doi.org/10.1016/j.chemphys.2004.07.004
  22. Tsuzuki, S.; Luthi, H. P. J. Chem. Phys. 2001, 114, 3949 https://doi.org/10.1063/1.1344891
  23. Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2004, 108, 6908 https://doi.org/10.1021/jp048147q
  24. Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. 2005, 1, 415 https://doi.org/10.1021/ct049851d
  25. Kollman, P. A. In Chemical Applications of Atomic and Molecular Electrostatic Potentials; Politzer, P. A., Truhlar, D. G., Eds.; Plenum: New York, 1981; p 243
  26. Morokuma, K.; Kitaura, K. In Chemical Applications of Atomic and Molecular Electrostatic Potentials; Politzer, P. A., Truhlar, D. G., Eds.; Plenum: New York, 1981; p 215
  27. Zhao, Y.; Tishchenko, O.; Truhlar, D. G. J. Phys. Chem. B 2005, 109, 19046 https://doi.org/10.1021/jp0534434
  28. Adamo, C.; Barone, V. J. Chem. Phys. 1998, 108, 664 https://doi.org/10.1063/1.475428
  29. Lynch, B. J.; Fast, P. L.; Harris, M.; Truhlar, D. G. J. Phys. Chem. A 2000, 104, 4811 https://doi.org/10.1021/jp000497z
  30. HyperChem Release 7.5, Hypercube, Inc.: Waterloo, Ontario, Canada, 2002
  31. (a) Cambridge Structure Database, Cambridge Crystallographic Data Centre, Cambridge, U. K. 2008. (Please refer to the other references for details:no.71~72)
  32. Choe, J.-I.; Kim, K; Chang, S.-K. Bull. Korean Chem. Soc. 2000, 21, 465
  33. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.;Kudin, K.N.;Burant, J. C.;Millam, J.M.;Iyengar, S.S.;Tomasi, J.;Barone, V.;Mennucci, B.;Cossi, M.;Scalmani, G.;Rega, N.;Petersson, G.A.;Nakatsuji, H.;Hada, M.;Ehara, M.;Toyota, K.;Fukuda, R.;Hasegawa, J.;Ishida, M.;Nakajima, T.;Honda, Y.;Kitao, O.;Nakai, H.;Klene, M.;Li, X.;Knox, J.E.;Hratchian, H.P.;Cross, J.B.;Bakken, V.;Adamo, C.;Jaramillo, J.;Gomperts, R.;Stratmann, R.E.;Yazyev, O.;Austin, A.J.;Cammi, R.;Pomelli, C.;Ochterski, J.W.;Ayala, P.Y.;Morokuma, K.;Voth, G.A.;Salvador, P.;Dannenberg, J.J.;Zakrzewski, V. G.;Dapprich, S.;Daniels, A.D.;Strain, M.C.;Farkas, O.;Malick, D.K.;Rabuck, A.D.;Raghavachari, K.;Foresman, J.B.;Ortiz, J.V.;Cui, Q.;Baboul, A.G.;Clifford, S.;Cioslowski, J.;Stefanov, B.B.; Liu, G.;Liashenko, A.;Piskorz, P.;Komaromi, I.;Martin, R.L.;Fox, D.J.;Keith, T.;Al-Laham, M.A.; Peng, C.Y.;Nanayakkara, A.;Challacombe, M.;Gill, P.M.W.;Johnson, B; Chen, W.;Wong, M.W.;Gonzalez, C.;Pople, J.A. Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford CT, 2004
  34. (a) Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford Univ. Press , Cambridge, 1997. (Please refer to the other references for details:no.71) https://doi.org/10.1007/s11224-005-4445-x
  35. Brouwer, E. B.; Udachin, K. A.; Enright, G. D.; Ripmeester, J. A. Chem.Commun. 2000, 1905 https://doi.org/10.1039/b001274m
  36. Clark, T. E.; Makha, M.; Raston, C. L.; Sobolev, A. N.; Cryst. Growth Des. 2006, 6, 2783 https://doi.org/10.1021/cg0605279
  37. Atwood, J. L.; Barbour, L. J.; Heaven, M. W.; Raston, C. L. Angew. Chem., 2003, 42, 3254 https://doi.org/10.1002/anie.200351033
  38. Agnihotri, P.; Suresh, E.; Paul, P.; Ghosh, P. K. Eur. J. Inorg. Chem. 2006, 3369 https://doi.org/10.1002/ejic.200600354
  39. Keller, S. W.; Schuster, G. M.; Tobiason, F. L. Polym, Mater. Sci. Eng., 1987, 57, 906
  40. Lee, S. J.; Chung, H. Y.; Kim, K. S. Bull. Korean Chem. Soc. 2004, 25, 1061 https://doi.org/10.5012/bkcs.2004.25.7.1061
  41. Chem3D, Version 7.0, Cambridge Soft, Cambridge, MA, U. S. A., 2001
  42. (b) Gutsche, C. D. Calixarenes Revisited; Royal Society of Chemistry: Cambridge, 1998. (The reference is seperated at no.1)
  43. (c) Vicens, J.; Asfari, Z.; Harrowfield, J. M. (Eds.), Calixarenes 50th Anniversary: Commemorative Volume; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991. (The reference is seperated at no.1)
  44. (d) Gutsche, C. D. Calixarenes; Royal Society of Chemistry: Cambridge, 1989. (The reference is seperated at no.1)
  45. (e) Vicens, J.; Bohmer, V. (Eds.), Calixarenes: A Versatile Class of Macrocyclic Compounds; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991. (The reference is seperated at no.1)
  46. (b) Gutsche, C. D. Acc. Chem. Res. 1983, 16, 161. (The reference is seperated at no.2) https://doi.org/10.1021/ar00089a003
  47. (c) Andreetti, G. D.; Ungaro, R.; Pochini, A. J. Chem. Soc., Chem. Comm. 1979, 1005. (The reference is seperated at no.2) https://doi.org/10.1039/C39790001005
  48. (c) Grootenhuis, P. D. J.; Kollman, P. A.; Groenen, L. C.; Reinhoudt, D. N.; van Hummel, G. J.; Ugozzoli, F.; Andreetti, G. D. J. Am. Chem. Soc. 1990, 112, 4165 (The reference is seperated at no.2) https://doi.org/10.1021/ja00167a010
  49. (f) Blixt, J.; Detellier, C. J. Am. Chem. Soc. 1995, 117, 8536. (The reference is seperated at no.5) https://doi.org/10.1021/ja00138a007
  50. (b) Groonen, L. C.; van Loon, J.-D.; Verboom, W.; Harkema, S.; Casnati, A.; Ungaro, R.; Pochini, A.; Ugozzoli, F.; Reinhoudt, D. N. J. Am. Chem. Soc. 1991, 113, 2385. (The reference is seperated at no.3) https://doi.org/10.1021/ja00007a006
  51. (b) Harada, T.; Rudzinski, J. M.; Shinkai, S. Tetrahedron 1993, 49, 5941. (The reference is seperated at no.5) https://doi.org/10.1016/S0040-4020(01)87180-5
  52. (c) Harada, T.; Ohseto F.; Shinkai, S. Tetrahedron 1994, 50, 13377. (The reference is seperated at no.5) https://doi.org/10.1016/S0040-4020(01)89345-5
  53. (d) van Hoorn, W. P.; Morshuis, M. G. H.; van Veggel, F. C. J. M.; Reinhoudt, D. N. J. Phys. Chem. 1998, 102, 1130. (The reference is seperated at no.5)
  54. (e) van Hoorn, W. P.; Briels, W. J.; van Duynthoven, J. P. M.; van Veggel, F. C. J. M.; Reinhoudt, D. N. J. Org. Chem. 1998, 63, 1299. (The reference is seperated at no.5) https://doi.org/10.1021/jo972134+
  55. (g) Fukazawa, Y.; Yoshimura, K.; Sasaki, S.; Yamazaki, M.; Okajima, T. Tetrahedron 1996, 52, 2301 (The reference is seperated at no.5) https://doi.org/10.1016/0040-4020(95)01047-5
  56. (b) Bernardino, R. J.; Costa Cabral, B. J.; Pereira, J. L. C. J. Mol. Struc. (THEOCHEM) 1998, 23, 455. (The reference is seperated at no.6)
  57. (b) Riehn, C.; Reimann, B.; Buchhold, K.; Barth, H.-D.; Vaupel, S.; Brutschy, B.; Tarakeshwar, P.; Kim, K. S. J. Chem. Phys. 2001, 115, 10045. (The reference is seperated at no.7) https://doi.org/10.1063/1.1415457
  58. (b) Barrett, G.; McKervey, M. A.; Malone, J. F.; Walker, A.; Arnaud-Neu, F.; Guerra, L.; Schwing-Weill, M.-J. J. Chem. Soc. Perkin Trans. 2 1993, 1475. (The reference is seperated at no.9)
  59. (c) Stewart, D. R.; Krawiec, M.; Kashyap, R. P.; Watson, W. H.; Gutsche, C. D. J. Amer. Chem. Soc. 1995, 117, 586. (The reference is seperated at no.9) https://doi.org/10.1021/ja00107a002
  60. (d) Gordon, J. L. M.; Böhmer, V.; Vogt, W. Tetrahedron Lett. 1995, 36, 2445. (The reference is seperated at no.9) https://doi.org/10.1016/0040-4039(95)00277-J
  61. (e) Pappalardo, S.; Parisi, M. F. J. Org. Chem. 1996, 61, 8724. (The reference is seperated at no.9) https://doi.org/10.1021/jo9615108
  62. (f) Arnaud-Neu, F; Fuangswasdi, S; Notti A.; Pappalardo, S.; Parisi, M. Angew. Chem. Int. Ed. 1998, 37, 112. (The reference is seperated at no.9)
  63. (g) Giannetto, M. Mori, G.; Notti, A.; Pappalardo, S.; Paris, M. F. Anal. Chem. 1998, 70, 4631. (The reference is seperated at no.9) https://doi.org/10.1021/ac9803840
  64. (h) Salvo, G. D.; Gattuso, G.; Notti, A.; Parisi, M.; Pappalardo, S. J. Org. Chem. 2002, 67, 684. (The reference is seperated at no.9) https://doi.org/10.1021/jo015982k
  65. (b) Markowitz, M. A.; Janout, V.; Castner, D. G.; Regen, S. L. J. Amer. Chem. Soc. 1989, 111, 8192. (The reference is seperated at no.10) https://doi.org/10.1021/ja00203a020
  66. (c) Souley, B.; Asfari, Z.; Vicens, J. Polish J. Chem. 1992, 66, 959. (The reference is seperated at no.10)
  67. (d) Kamerer, H.; Happel, G.; Mathiasch, B. Makromol. Chem. 1981, 182, 1685. (The reference is seperated at no.10) https://doi.org/10.1002/macp.1981.021820609
  68. (e) Souley, B.; Asfari, Z.; Vicens, J. Polish J. Chem. 1993, 67, 763. (The reference is seperated at no.10)
  69. (b) Lutz, B. T. G.; Astarloa, G.; van der Maas, J. H.; Janssen, R. G.; Verboom, W.; Reinhoudt, D. N. Vib. Spectrosc. 1995, 10, 29. (The reference is seperated at no.15)
  70. b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785 (The reference is seperated at no.18) https://doi.org/10.1103/PhysRevB.37.785
  71. (b) Atwood, J. L.; Barbour, L. J.; Heaven, M. W.; Raston, C. L. Angew. Chem. 1998, 37, 981. (The reference is seperated at no.31) https://doi.org/10.1002/(SICI)1521-3773(19980420)37:7<981::AID-ANIE981>3.0.CO;2-X
  72. (c) Andretti, G. D.; Ugozzoli, F.; Casnati, A.; Ghidini, E.; Pochini, A.; Ungaro, R. Gazz. Chim. Ital. 1989, 119, 47 (The reference is seperated at no.31)
  73. (b) Pak, C.: Lee, H. M.; Kim, J. C.; Kim, D.; Kim, K. S. Struct. Chem. 2005, 16, 187-202. (The reference is seperated at no.34) https://doi.org/10.1007/s11224-005-4445-x

Cited by

  1. A detailed study of self-assembled (Al,Ga)InP quantum dots grown by molecular beam epitaxy vol.211, pp.11, 2014, https://doi.org/10.1002/pssa.201431348
  2. Influence of polyether chain on the non-covalent interactions and stability of the conformers of calix[4]crown ethers vol.91, pp.1-2, 2018, https://doi.org/10.1007/s10847-018-0801-5