DOI QR코드

DOI QR Code

Spectrophotometric Investigation of Oxidation of Cefpodoxime Proxetil by Permanganate in Alkaline Medium: A Kinetic Study

알칼리성 용매에서 과망간에 의한 세프포독심 프록세틸의 산화의 분광광도법적 조사: 속도론적 연구

  • Khan, Aftab Aslam Parwaz (Department of Chemistry, Aligarh Muslim University) ;
  • Mohd, Ayaz (Department of Chemistry, Aligarh Muslim University) ;
  • Bano, Shaista (Department of Chemistry, Aligarh Muslim University) ;
  • Siddiqi, K. S. (Department of Chemistry, Aligarh Muslim University)
  • Published : 2009.12.20

Abstract

A Kinetics pathway of oxidation of Cefpodoxime Proxetil by permanganate in alkaline medium at a constant ionic strength has been studied spectrophotometrically. The reaction showed first order kinetics in permanganate ion concentration and an order less than unity in cefpodoxime acid and alkali concentrations. Increasing ionic strength of the medium increase the rate. The oxidation reaction proceeds via an alkali-permanganate species which forms a complex with cefpodoxime acid. The latter decomposes slowly, followed by a fast reaction between a free radical of cefpodoxime acid and another molecule of permanganate to give the products. Investigations of the reaction at different temperatures allowed the determination of activation parameters with respect to the slow step of proposed mechanism and fallows first order kinetics. The proposed mechanism and the derived rate laws are consistent with the observed kinetics.

Keywords

Cepfodoxime proxetil;Permanganate;Kinetics;Themodynamics

References

  1. Borin, M. T. Drugs 1991, 42, 1 https://doi.org/10.2165/00003495-199100423-00005
  2. Rodrıguez, J. C.; Hernandez, R.; Gonzalez, M.; Rodrıguez, Z.; Tolon, B; Velez, H.; Valdes, B.; Lopez, M. A.; Fini, A. II Farmaco. 2003, 58, 363 https://doi.org/10.1016/S0014-827X(03)00051-X
  3. Camus, F.; Deslandes, A.; Harcouet, L.; Farinotti, R. J. Chromatogr B. 1994, 656, 383 https://doi.org/10.1016/0378-4347(94)00122-7
  4. Lovdahl, M. J. ; Recher, K. E. ; Russlie, H. Q. ; Canafax, D. M. J. Chromatogr B. 1994, 653, 227 https://doi.org/10.1016/0378-4347(93)E0420-U
  5. Yamana, T.; Tsuji, A. J. Pharm. Sci. 1976, 65, 1563 https://doi.org/10.1002/jps.2600651104
  6. Hovorka, S. W. ; Schoneich, C. J. Pharm. Sci. 2001, 90, 254 https://doi.org/10.1002/1520-6017(200103)90:3<253::AID-JPS1>3.0.CO;2-W
  7. Shaabani, A.; Tavasoli-Rad, F.; Lee, D. G. Synth. Commun. 2005, 35, 571 https://doi.org/10.1081/SCC-200049792
  8. Caron, S.; Dugger, R. W.; Ruggeri, S. G.; Ragan, J. A.; Brown, D. H.; Ripin, Chem.Rev. 2006, 106, 2943 https://doi.org/10.1021/cr040679f
  9. Lee, D. G.; Trahanovsky, W. S., ' Oxidation in Organic Chemistry Part D', Ed.; Academic Press: New York, U. S. A., 1982, 147
  10. Simandi, L. I.; Patai, S.; Rappoport, Z., ' The Chemistry of Functional Groups' , Ed.; Wiley: Chichester, 1983, Suppl. C.
  11. Lee, D. G.; Lee, E. J.; Brown, K. C., ' Phase Transfer Catalysis, New Chemistry, Catalysis and Applications' ACS Symposium Series, American Chemical Society: Washington, DC, 1987, vol. 326
  12. Fatiadi, A. J. Synthesis 1987, 106, 85 https://doi.org/10.1055/s-1987-27859
  13. Stewart, R.; Gardner, K. A.; Kuehnert, L. L.; Mayer, J. M. Inorg. Chem. 1997, 36, 2069 https://doi.org/10.1021/ic961297y
  14. Panari, R. G.; Chougale, R. B.; Nandibewoor, S. T. Pol. J. Chem. 1998, 72, 99, 107
  15. Bohn, A.; Adam, M.; Mauermann, H.; Stein, S.; Mullen, K. Tetrahedron Lett 1992, 33, 2795 https://doi.org/10.1016/S0040-4039(00)78860-5
  16. Jeffery, G. H.; Bassett, J.; Mendham, J.; Denny, R. C. ' Vogel's Text Book of Quantitative Chemical Analysis' 5th ed.; ELBS Longman: Essex, U. K, 1996, 370
  17. Carrington, A.; Symons, M. C. R. ' Structure and Reactivity of Oxyanions of Transition Metals. Part I. The Manganese Oxy-anions.' J. Chem. Soc. 1956, 337, 3
  18. Siddiqi, K. S.; Mohd, A.; Parwaz Khan, A. A.; Bano, S. J. Korean. Chem. Soc. 2009, 53, 152 https://doi.org/10.5012/jkcs.2009.53.2.152
  19. Darwish, I. A. Analytica Chimica Acta, 2005, 551, 222 https://doi.org/10.1016/j.aca.2005.07.027
  20. Timmanagoudar, P. L.; Hiremath, G. A.; Nandibewoor, S. T. Transition. Met. Chem. 1997, 22, 193 https://doi.org/10.1023/A:1018487718591
  21. Nadimpalli, S.; Rallabandi, R. A.; Dikshitulu, L. S. A. Transition Met. Chem. 1993, 18, 510 https://doi.org/10.1007/BF00136616
  22. Thabaj, K. A.; Kulkarni, S. D.; Chimatadar, S. A.; Nandibewoor, S. T. Polyhedron 2007, 26, 4877 https://doi.org/10.1016/j.poly.2007.06.030
  23. Panari, R. G.; Chougale, R. B.; Nandibewoor, S. T. J. Phys. Org. Chem. 1998, 11, 448 https://doi.org/10.1002/(SICI)1099-1395(199807)11:7<448::AID-POC23>3.0.CO;2-A
  24. Kini, A. K.; Farokhi, S. A.; Nandibewoor, S. T. Transition. Met. Chem. 2002, 27, 532 https://doi.org/10.1023/A:1015641231236
  25. Devi, J.; Kothari, S.; Banerjee, K .K. Indian J. Chem. 1995, 34A, 116
  26. Weissberger, A.; Lewis, E. S. Ed, ' Investigation of rate and Mechanism of reaction In Techniques of Chemistry', Ed.; Willey: Interscience Publication, New York 1974, 421
  27. Rangappa, K. S.; Raghavendra, M. P.; Mahadevappa, D. S.; Channegouda, D. J.Org. Chem. 1998, 63, 531 https://doi.org/10.1021/jo971398t
  28. Bugarcic, Z. D.; Nandibewoor, S. T.; Hamza, M. S. A.; Heimemann, F.; Rudi, Van, Eldik, Dalton Trans. 2006, 2984

Cited by

  1. Kinetics and Mechanism of Oxidation of D-Penicillamine by Potassium Hexacyanoferrate(III) Ions in Aqueous Solution in the Presence of Sodium Dodecyl Sulphate and Cetyltrimethylammonium Bromide vol.32, pp.5, 2011, https://doi.org/10.1080/01932691.2010.480860
  2. Study of the base-catalysed oxidation of the anti-bacterial and anti-protozoal agent metronidazole by permanganate ion in alkaline medium vol.40, pp.4, 2014, https://doi.org/10.1007/s11164-013-1075-6
  3. Kinetics and Mechanism of Deamination and Decarboxylation of 2-Aminopentanedioic Acid by Quinolinium Dichromate (QDC) in Aqueous Perchloric Acid Medium vol.50, pp.17, 2011, https://doi.org/10.1021/ie100853p