DOI QR코드

DOI QR Code

Supercooled Liquid, Glass and Glass Transition

과냉각 액체, 유리 그리고 유리 전이

  • Published : 2009.04.20

Abstract

Characteristics of supercooled liquid and glass, which are the states involved in glass transition, are reviewed. These states are non-equilibrium states, therefore, the glass transition is different from the usual phase transitions. Theories of glass transition and related experimental methods are briefly summarized.

Keywords

Glass transition;Supercooled liquid;Non-equilibrium state

References

  1. Blanckard, J. M. V.; Lillford P. ed. The Glassy State in Foods, Nottingham Univ. Nottingham, 1993.
  2. Crowe, J. H.; Carpenter, J. F.; Crowe, L. M. Annu.Rev. Physiol. 1998, 60, 73. https://doi.org/10.1146/annurev.physiol.60.1.73
  3. Jenniskens, P.; Blake, D. F. Science, 1994, 265,753. https://doi.org/10.1146/annurev.physiol.60.1.73
  4. Zallen, R. The Physics of Amorphous Solids, Wiley, New York, 1984. https://doi.org/10.1126/science.11539186
  5. Fischer, K. H.; Hertz, J. A. Spin Glasses, Cambridge University, Cambridge, 1991.
  6. Angell, C. A.; Ngai, K. L.; McKenna, G. B.; McMillan, P. F.; Martin, S. W. J. Appl. Phys. 2000, 88, 3113. https://doi.org/10.1063/1.1286035
  7. Angell, C. A. Science, 1995, 267, 1924. https://doi.org/10.1126/science.267.5206.1924
  8. Angell, C. A. Science, 2008, 319, 582. https://doi.org/10.1063/1.1286035
  9. Angell, C. A. J. Non-Cryst. Solids, 1988, 102, 205. https://doi.org/10.1126/science.267.5206.1924
  10. Debenedetti, P. G.; Stillinger, F. H. Nature, 2001,410, 259. https://doi.org/10.1126/science.1131939
  11. Vogel, H. Phys. Z. 1921, 22, 645. https://doi.org/10.1016/0022-3093(88)90133-0
  12. Stillinger, F. H. J. Chem. Phys. 1988, 88, 7818. https://doi.org/10.1063/1.454295
  13. Dyre, J. C. Rev. Mod. Phys. 2006, 78, 953. https://doi.org/10.1063/1.454295
  14. Strillinger, F. H. Science, 1995, 267, 1935. https://doi.org/10.1103/PhysRevLett.58.767
  15. Ferry, J. D.; Grandine, L. D.; Schonhals, A. J. Appl. Phys. 1953, 24, 911. https://doi.org/10.1021/cr60135a002
  16. Kauzmann, W. Chem, Rev. 1948, 43, 219. https://doi.org/10.1021/cr60135a002
  17. Martinez, L. M.; Angell, C. A. Nature, 2001, 410,663. https://doi.org/10.1146/annurev.physchem.51.1.99
  18. Wales, D. J. Energy Landscapes, Cambridge Univ., Cambridge, 2003.
  19. Ediger, M. D. Ann. Rev. Phys. Chem. 2000, 51, 99. https://doi.org/10.1021/cr00101a006
  20. Blackburn, F. R.; Wang, C. Y.; Ediger, M. D. J. Phys. Chem. 1996, 100, 18429.
  21. Mikkelson. J. C. Mater. Res. Soc. Symp. Proc.1986, 59. 19.
  22. Angell, C. A. Chem. Rev. 1990, 90, 523. https://doi.org/10.1002/prot.340210302
  23. Atkins, P.; De Paula, J. Physical Chemistry, 8 ed, Oxford, UK, 2006. https://doi.org/10.1063/1.1399036
  24. Kim, H. J. Kor. Chem. Soc. 2007, 51, 487. https://doi.org/10.1146/annurev.physchem.58.032806.104653
  25. Johari, G. P.; Goldstein, M. J. Chem. Phys. 1970, 53, 2372. https://doi.org/10.1063/1.1674335
  26. Prigogine, I.; Defay, R. Chemical Thermodynamics, Longman Greens, London, 1954.
  27. Bryngelson, J. D.; Onuchic, J. N.; Socci, N. D.; Wolynes, P. G. Proteins: Struct. Funct. Gen. 1995, 21, 167. https://doi.org/10.1002/prot.340210302
  28. Hodge, I. M. J. Non-Cryst. Solids, 1996, 202, 164. https://doi.org/10.1002/pol.1954.120147514
  29. Nieuwenhuizen, T. M. J. Chem. Phys. 2001, 115, 8083. https://doi.org/10.1002/9780470142684.ch6
  30. Lubchenko, V.; Wolynes, P. G. Ann. Rev. Phys. Chem. 2007, 58, 235. https://doi.org/10.1146/annurev.physchem.58.032806.104653
  31. McQuarrie, D. A. Statistical Mechanics, University Science, Sausalito, 2000
  32. Van Kampen, N. G. Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam, 1981. https://doi.org/10.1063/1.1736628
  33. Angell, C. A. J. Res. Nat. Inst. Stand. Tech. 1997, 102, 171. https://doi.org/10.1126/science.1089446
  34. Adam, G.; Gibbs, J. H. J. Chem. Phys. 1965, 43, 139. https://doi.org/10.1038/nmat1247
  35. Fox, T. G.; Flory, P. J. J. Polm. Sci. 1954, 14, 315. https://doi.org/10.1103/PhysRevLett.81.1031
  36. Grest, G. S.; Cohen, M. H. Adv. Chem. Phys. 1981, 48, 455. https://doi.org/10.1103/PhysRev.150.291
  37. Tobolsky, A.; Powell, R. E.; Eyring, H. in Frontiers in Chemistry, Burk, R. E.; Grummit, O. ed. 1943, Interscience, New York, 1, 125. https://doi.org/10.1088/0022-3719/21/18/007
  38. Ruocco, G.F.; Sciortino, F.; Zamponi, F.; De Mishele, C. Scopigno, T. J. Chem. Phys. 2004, 120, 10666. https://doi.org/10.1063/1.1736628
  39. Scopigno, T.; Ruocco, G.; Sette, F.; Monaco, G. Science 2003, 302, 849. https://doi.org/10.1103/PhysRevLett.35.1792
  40. Dyre, J. C. Nature Mat. 2004, 3, 749. https://doi.org/10.1103/PhysRevB.23.5871
  41. Olsen, N. B.; Dyre, J. C.; Christensen, T. Phys. Rev. Lett. 1998. 81, 1031. https://doi.org/10.1039/tf9706600080
  42. Das, S. P. Rev. Mod. Phys. 2004, 76, 785. https://doi.org/10.1146/annurev.physchem.50.1.485
  43. Kawasaki, K. Phys. Rev. 1966, 150, 291 https://doi.org/10.1103/PhysRev.150.291
  44. Gotze, W.; Sjogren, L. J. Phys. C 1988, 21, 3407. https://doi.org/10.1016/S0301-0104(02)00549-9
  45. Xia, X.; Wolynes, P. G. Proc. Natl. Acad. Sci.USA 2000, 97, 2990. https://doi.org/10.1063/1.1674335
  46. Sherrington, D.; Kirkpatrick, S. Phys. Rev. Lett. 1975, 35, 1792. https://doi.org/10.1103/PhysRevLett.35.1792
  47. Yussouff, M. Phys. Rev. B 1981, 23, 5871. https://doi.org/10.1103/PhysRevB.23.5871
  48. Williams, G.; Watts, D. C. J. Chem. Soc. Faraday Trans. 1970, 66, 80. https://doi.org/10.1016/j.jnoncrysol.2007.06.097
  49. Gruebele, M. Ann. Rev. Phys. Chem. 1999, 50, 485. https://doi.org/10.1146/annurev.physchem.50.1.485
  50. Kremer F.; Schonhals A.; Luck W. Broadband Dielectric Spectroscopy, Springer, New York, 2002. https://doi.org/10.1038/31146
  51. Lunkenheimer, P.; Loidl, A. Chem. Phys. 2002, 284, 205. https://doi.org/10.1103/PhysRevB.37.4656
  52. Johari, G. P.; Goldstein, M. J. Chem. Phys. 1970, 53, 2372. https://doi.org/10.1103/PhysRevLett.80.4915
  53. Mikhailov, G. P. in Physics of Non-crystalline Solids, ed Prins, J. A. North Holland, Amsterdam, 1965. https://doi.org/10.1103/PhysRevLett.84.6054
  54. Johari, G. P. J. Chim. Phys. 1985, 82, 283. https://doi.org/10.1051/jcp/1985820283
  55. Phillips W. A. ed. Amorphous Solids: Low Temperature Properties, Springer, New York, 1981.
  56. Taraskin, S.; Eilliott, S. Phys. Rev. B 1999, 59, 8572. https://doi.org/10.1103/PhysRevB.59.8572
  57. Massiot, D.; Fayon, F.; Montouillout, V.; Pellerin, N.; Hiet, J.; Roiland, C.; Florian, P. Coutures, J.-P.; Cormier, L.; Neuvulle, D. R. J Non-Cryst Sol. 2008, 354, 249. https://doi.org/10.1016/j.jnoncrysol.2007.06.097
  58. Sastry, S.; Debenedetti, P. G.; Stillinger, F. H. Nature, 1998, 393, 554. https://doi.org/10.1038/31146
  59. Luedtke,W. D.; Landman, U. Phys. Rev. B 1988, 37, 4656. https://doi.org/10.1103/PhysRevB.37.4656
  60. Doilwa, B.; Heuer, A. Phys. Rev. Lett. 1998, 80, 4915. https://doi.org/10.1103/PhysRevLett.80.4915
  61. Stillinger, F. H.; Weber, T. A. Phys. Rev. B 1985, 31, 5262. https://doi.org/10.1103/PhysRevB.31.5262
  62. Di Leonardo, R.; Angelani, L.; Parisi, G.; Ruocco, G. Phys. Rev. Lett. 2000, 84, 6054. https://doi.org/10.1103/PhysRevLett.84.6054
  63. Fulcher, G. S. J. Am. Ceram. Soc. 1925, 8, 339. https://doi.org/10.1111/j.1151-2916.1925.tb16731.x
  64. Tammann, G.; Hesse, W. Z. Anorg. Allg. Chem. 1926, 156, 245. https://doi.org/10.1038/35065704
  65. Rawson, H. IEE Proc. Part A, 1988, 35, 325. https://doi.org/10.1103/RevModPhys.78.953
  66. Varshneya, A. K. Fundamentals of Inorganic Glasses, Academic, New York, 1994 https://doi.org/10.1126/science.267.5206.1935
  67. Bassler, H. Phys. Rev. Lett., 1987, 58, 767. https://doi.org/10.1038/35070517
  68. Stillinger, F. H.; Debenedetti, P. G. J. Chem. Phys. 2002, 116, 3353. https://doi.org/10.1063/1.1434997
  69. Chang, I.; Silescu, H. J. Phys. Chem. B 1997, 101, 8794 https://doi.org/10.1021/jp9640989
  70. Ngai, K. L. J. Phys. Chem. B 1999, 103, 10684. https://doi.org/10.1063/1.1674335
  71. Angell, C. A. Ann. Rev. Phys. Chem. 1992, 43, 693. https://doi.org/10.1016/0022-3093(96)00151-2
  72. Onuchic, J. N.; Nymeyer, H.; Garcia, A. E.; Chahine, J.; Socci, N. D. Adv. Prot. Chem. 2000, 53, 87. https://doi.org/10.1063/1.1696442
  73. Turnbull, D.; M. H. Cohen, M. H. J. Chem. Phys. 1970, 52, 3038. https://doi.org/10.1103/RevModPhys.76.785
  74. Novikov, V. N.; Sokolov, A. P. Nature 2004, 431, 961. https://doi.org/10.1038/nature02947
  75. Granato, A. V.; Khonik, V. A. Phys. Rev. Lett. 2004, 93, 155502. https://doi.org/10.1103/PhysRevLett.93.155502
  76. Zhu, D. Phys. Rev. B 1996, 54, 6287. https://doi.org/10.1103/PhysRevB.54.6287
  77. Xia, X.; Wolynes, P. G. Phys. Rev. Lett. 2001, 86, 5526. https://doi.org/10.1103/PhysRevLett.86.5526
  78. Haymet, A. D. J. Ann. Rev. Phys. Chem. 1987, 38, 89. https://doi.org/10.1103/PhysRevB.59.8572
  79. Luedtke, W. D.; Landman, U. Phys. Rev. B 1989, 40, 1164. https://doi.org/10.1103/PhysRevB.40.1164
  80. Johari, G. P.; Goldstein, M. J. Chem. Phys. 1971, 55, 4245. https://doi.org/10.1103/PhysRevB.31.5262
  81. Williams, G.; Watts, D. C. Trans. Faraday Soc. 1971, 67, 1971. https://doi.org/10.1039/tf9716701971
  82. Wu, L. Phys. Rev. E 1998, 57, 7346. https://doi.org/10.1103/PhysRevE.57.7346
  83. Ferandez, J. R.; Harrowell, P. Phys. Rev. E 2003, 67, 011403. https://doi.org/10.1103/PhysRevE.67.011403
  84. Doilwa, B.; Heuer, A. J. Non-Cryst. Solids, 2002, 307, 32. https://doi.org/10.1016/S0022-3093(02)01437-0
  85. Barkema, G. T.; Mousseau, N. Phys. Rev. Lett. 1998, 81, 1865. https://doi.org/10.1103/PhysRevLett.81.1865
  86. Angelani, L.; Di Leonardo, R.; Ruocco, G.; Scala, A.; Sciotinom F. J. Chem. Phys. 2002, 116, 10297. https://doi.org/10.1063/1.1475764